已知橢圓:
的離心率為
,其長軸長與短軸長的和等于6.
(1)求橢圓的方程;
(2)如圖,設橢圓的上、下頂點分別為
,
是橢圓上異于
的任意一點,直線
分別交
軸于點
,若直線
與過點
的圓
相切,切點為
.證明:線段
的長為定值.
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點和兩個焦點構成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓
交于
、
兩點,試問,是否存在
軸上的點
,使得對任意的
,
為定值,若存在,求出
點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的短半軸長為
,動點
在直線
(
為半焦距)上.
(1)求橢圓的標準方程;
(2)求以為直徑且被直線
截得的弦長為
的圓的方程;
(3)設是橢圓的右焦點,過點
作
的垂線與以
為直徑的圓交于點
,
求證:線段的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知離心率為的橢圓
的頂點
恰好是雙曲線
的左右焦點,點
是橢圓
上不同于
的任意一點,設直線
的斜率分別為
.
(1)求橢圓的標準方程;
(2)當,在焦點在
軸上的橢圓
上求一點Q,使該點到直線(
的距離最大。
(3)試判斷乘積“(”的值是否與點(
的位置有關,并證明你的結論;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓經過點
,離心率為
.
(1)求橢圓的方程;
(2)直線與橢圓
交于
兩點,點
是橢圓
的右頂點.直線
與直線
分別與
軸交于點
,試問以線段
為直徑的圓是否過
軸上的定點?若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓
的“準圓”上的動點,過點
作橢圓的切線
交“準圓”于點
.
(。┊旤c為“準圓”與
軸正半軸的交點時,求直線
的方程,
并證明;
(ⅱ)求證:線段的長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖;已知橢圓C:的離心率為
,以橢圓的左頂點T為圓心作圓T:
設圓T與橢圓C交于點M、N.
(1)求橢圓C的方程;
(2)求的最小值,并求此時圓T的方程;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與軸交于點R,S,O為坐標原點。求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點F(0,1)和直線l1:y=-1,過定點F與直線l1相切的動圓圓心為點C.
(1)求動點C的軌跡方程;
(2)過點F的直線l2交軌跡于兩點P、Q,交直線l1于點R,求·
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com