給定橢圓:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓
的“準圓”上的動點,過點
作橢圓的切線
交“準圓”于點
.
(。┊旤c為“準圓”與
軸正半軸的交點時,求直線
的方程,
并證明;
(ⅱ)求證:線段的長為定值.
(1),
,(2)(ⅰ)
,(ⅱ)詳見解析.
解析試題分析:(1)求橢圓方程,利用待定系數法,列兩個獨立方程就可解出因為短軸上的一個端點到
的距離為
,所以
而
所以
再根據“準圓”定義,寫出“準圓”方程.(2)(。┲本與橢圓相切問題,通常利用判別式為零求切線方程,利用點斜式設直線方程,與橢圓方程聯立消
得關于
的一元二次方程,由判別式為零得斜率
,即證得兩直線垂直.(ⅱ)本題是(ⅰ)的一般化,首先對斜率是否存在進行討論,探討得斜率不存在時有兩直線垂直,即將問題轉化為研究直線是否垂直問題,具體就是研究
是否成立.研究思路和方法同(。,由于點
坐標在變化,所以由判別式為零得關于點
坐標的一個等式:
,即
,而這等式對兩條切線都適用,所以
的斜率為方程
兩根,因此
.當
垂直時,線段
為準圓
的直徑,為定值4.
試題解析:解:(1),
橢圓方程為
, 2分
準圓方程為. 3分
(2)(ⅰ)因為準圓與
軸正半軸的交點為
,
設過點且與橢圓相切的直線為
,
所以由得
.
因為直線與橢圓相切,
所以,解得
, 6分
所以方程為
. 7分
,
. 8分
(ⅱ)①當直線中有一條斜率不存在時,不妨設直線
斜率不存在,
則:
,
當:
時,
與準圓交于點
,
此時為
(或
),顯然直線
垂直;
同理可證當:
時,直線
垂直. 10分
②當斜率存在時,設點
,其中
.
設經過點與橢圓相切的直線為
科目:高中數學 來源: 題型:解答題
已知拋物線C:,點A、B在拋物線C上.
(1)若直線AB過點M(2p,0),且=4p,求過A,B,O(O為坐標原點)三點的圓的方程;
(2)設直線OA、OB的傾斜角分別為,且
,問直線AB是否會過某一定點?若是,求出這一定點的坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的焦距為
,過右焦點和短軸一個端點的直線的斜率為
,
為坐標原點.
(1)求橢圓的方程.
(2)設斜率為的直線
與
相交于
、
兩點,記
面積的最大值為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,其長軸長與短軸長的和等于6.
(1)求橢圓的方程;
(2)如圖,設橢圓的上、下頂點分別為
,
是橢圓上異于
的任意一點,直線
分別交
軸于點
,若直線
與過點
的圓
相切,切點為
.證明:線段
的長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點F和橢圓的右焦點重合,直線
過點F交拋物線于A、B兩點.
(1)求拋物線C的方程;
(2)若直線交y軸于點M,且
,m、n是實數,對于直線
,m+n是否為定值?
若是,求出m+n的值;否則,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知點是離心率為
的橢圓
:
上的一點,斜率為
的直線
交橢圓
于
,
兩點,且
、
、
三點互不重合.
(1)求橢圓的方程;(2)求證:直線
,
的斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,點P到兩圓C1與C2的圓心的距離之和等于4,其中C1:
,C2:
. 設點P的軌跡為
.
(1)求C的方程;
(2)設直線與C交于A,B兩點.問k為何值時
?此時
的值是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線E:ax2+by2=1(a>0,b>0),經過點M的直線l與曲線E交于點A、B,且
=-2
.
(1)若點B的坐標為(0,2),求曲線E的方程;
(2)若a=b=1,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程;
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com