精英家教網 > 高中數學 > 題目詳情

(本小題10分) 
求下列函數導數
(1)  f(x)= (2)

(1)f'(x)= ;
(2)。

解析試題分析:根據,,求f(x)的導數即可.
(1)f'(x)=                     ---------------- 5 分
(2)    -------    5分
考點:常見函數的導數公式.
點評:掌握常用函數的導數公式是解本題的關鍵,本小題用到的導數公式有,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題滿分10分)
(Ⅰ)已知 , 求
(Ⅱ)已知 , 求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)設函數..
(Ⅰ)時,求的單調區間;
(Ⅱ)當時,設的最小值為,若恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分16分)
已知函數
(1)若x=2是函數f(x)的極值點,求實數a的值.
(2)若函數上是增函數,求實數的取值范圍;
(3)若函數上的最小值為3,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分13分) 已知函數,函數
(I)當時,求函數的表達式;
(II)若,且函數上的最小值是2 ,求的值;
(III)對于(II)中所求的a值,若函數,恰有三個零點,求b的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設函數時取得極值.
(I)求的值;
(II)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知:,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知函數的圖象過點,且在點處的切線方程為
(Ⅰ)求函數的解析式;(Ⅱ)求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的圖像在處的切線方程;
(2)設實數,求函數上的最小值。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视