精英家教網 > 高中數學 > 題目詳情

【題目】為降低養殖戶養鴨風險,某保險公司推出了鴨意外死亡保險,該保單合同規定每只幼鴨投保2元,若生長期內鴨意外死亡,則公司每只鴨賠付12.假設鴨在生長期內的意外死亡率為0.15,且每只鴨是否死亡相互獨立.若某養殖戶養鴨3000只,都投保該險種.

1)求該保單保險公司賠付金額等于保費時,鴨死亡的只數;

2)求該保單保險公司平均獲利多少元.

【答案】1500只;(2600

【解析】

1)根據題意,得到保費的總額,再除以每只鴨賠付的金額,得到答案;

2)根據鴨在生長期內的意外死亡率,得到需賠付的金額,然后根據總的保費,得到平均獲利.

1

答:該保險公司賠付金額等于保費時,鴨死亡只數為.

2)因為鴨在生長期內的意外死亡率為0.15,

所以需賠付的金額為,

總保費為,

所以得到平均獲利為.

答:該保單保險公司平均獲利.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如果函數的定義域為,且存在實常數,使得對于定義域內任意,都有成立,則稱此函數具有“性質.

1)判斷函數是否具有“性質”,若具有“性質”,求出所有的值的集合,若不具有“性質”,請說明理由;

2)已知函數具有“性質”,且當時,,求函數在區間上的值域;

3)已知函數既具有“性質”,又具有“性質”,且當時,,若函數的圖像與直線2017個公共點,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面有三個游戲規則,袋子中分別裝有球,從袋中無放回地取球,問其中不公平的游戲是(

游戲1

游戲2

游戲3

袋中裝有一個紅球和一個白球

袋中裝有2個紅球和2個白球

袋中裝有3個紅球和1個白球

1個球,

1個球,再取1個球

1個球,再取1個球

取出的球是紅球甲勝

取出的兩個球同色甲勝

取出的兩個球同色甲勝

取出的球是白球乙勝

取出的兩個球不同色乙勝

取出的兩個球不同色乙勝

A.游戲1B.游戲2C.游戲3D.游戲2和游戲3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某“雙一流”大學專業獎學金是以所學專業各科考試成績作為評選依據,分為專業一等獎學金、專業二等獎學金及專業三等獎學金,且專業獎學金每個學生一年最多只能獲得一次.圖(1)是統計了該校名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業獎學金的頻率柱狀圖.

(Ⅰ)求這名學生中獲得專業三等獎學金的人數;

(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯表并判斷是否有的把握認為該校學生獲得專業一、二等獎學金與是否是“努力型”學生有關?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】配速是馬拉松運動中常使用的一個概念,是速度的一種,是指每公里所需要的時間,相比配速,把心率控制在一個合理水平是安全理性跑馬拉松的一個重要策略.1是一個馬拉松跑者的心率(單位:次/分鐘)和配速(單位:分鐘/公里)的散點圖,圖2是一次馬拉松比賽(全程約42公里)前3000名跑者成績(單位:分鐘)的頻率分布直方圖:

1)由散點圖看出,可用線性回歸模型擬合的關系,求的線性回歸方程;

2)該跑者如果參加本次比賽,將心率控制在160左右跑完全程,估計他能獲得的名次.

參考公式:線性回歸方程中,,參考數據:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC的內角AB,C的對邊分別為ab,c,已知△ABC的面積為.

1)求sinBsinC;

2)若3cosBsin2A+sin2Bsin2C)=sinAsinB,a6,求b+c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】華為公司在201789日推出的一款手機,已于919日正式上市.據統計發現該產品的廣告費用x與銷售額y的統計數據如下表:

廣告費用x(百萬元)

4

2

3

5

銷售額y(百萬元)

44

25

37

54

根據上表可得回歸方程中的9.4,據此模型預測廣告費用為6百萬元時,銷售額為(

A.61.5百萬元B.62.5百萬元C.63.5百萬元D.65.0百萬元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種出口產品的關稅稅率,市場價格(單位:千元)與市場供應量(單位:萬件)之間近似滿足關系式:,其中、均為常數.當關稅稅率為時,若市場價格為5千元,則市場供應量約為1萬件;當關稅稅率為時,若市場價格為7千元,則市場供應量約為2萬件.

(1)試確定、的值;

(2)市場需求量(單位:萬件)與市場價格近似滿足關系式:.當時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱柱中,,側面底面,的中點,,.

(Ⅰ)求證:為直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视