設,
分別是橢圓E:
+
=1(0﹤b﹤1)的左、右焦點,過
的直線
與E相交于A、B兩點,且
,
,
成等差數列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。
科目:高中數學 來源: 題型:解答題
(1)設橢圓:
與雙曲線
:
有相同的焦點
,
是橢圓
與雙曲線
的公共點,且
的周長為
,求橢圓
的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓”的方程為
.設“盾圓
”上的任意一點
到
的距離為
,
到直線
的距離為
,求證:
為定值;
(3)由拋物線弧:
(
)與第(1)小題橢圓弧
:
(
)所合成的封閉曲線為“盾圓
”.設過點
的直線與“盾圓
”交于
兩點,
,
且
(
),試用
表示
;并求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為
,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(
+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
圓C的圓心在y軸上,且與兩直線l1:;l2:
均相切.
(I)求圓C的方程;
(II)過拋物線上一點M,作圓C的一條切線ME,切點為E,且
的最小值為4,求此拋物線準線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點,焦點在坐標軸上的橢圓,它的離心率為
,一個焦點和拋物線
的焦點重合,過直線
上一點
引橢圓
的兩條切線,切點分別是
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點
處的橢圓的切線方程是
. 求證:直線
恒過定點
;并出求定點
的坐標.
(Ⅲ)是否存在實數,使得
恒成立?(點
為直線
恒過的定點)若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
選修4-4:坐標系與參數方程
在直角坐標系中,直線L的方程為x-y+4=0,曲線C的參數方程為
(1)求曲線C的普通方程;
(2)設點Q是曲線C上的一個動點,求它到直線L的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(其中
為坐標原點),求整數
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)設圓C:,此圓與拋物線
有四個不同的交點,若在
軸上方的兩交點分別為
,
,坐標原點為
,
的面積為
。
(1)求實數的取值范圍;
(2)求關于
的函數
的表達式及
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知拋物線
:
和點
,若拋物線
上存在不同兩點
、
滿足
.
(I)求實數的取值范圍;
(II)當時,拋物線
上是否存在異于
的點
,使得經過
三點的圓和拋物線
在點
處有相同的切線,若存在,求出點
的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com