精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)已知拋物線和點,若拋物線上存在不同兩點、滿足
(I)求實數的取值范圍;
(II)當時,拋物線上是否存在異于的點,使得經過三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標,若不存在,請說明理由.

(1) 即的取值范圍為
(2) 滿足題設的點存在,其坐標為 . 

解析試題分析:解法1:(I)不妨設A,B,且,∵,
.∴,
根據基本不等式(當且僅當時取等號)得
),即,
,即的取值范圍為
(II)當時,由(I求得、的坐標分別為、
假設拋物線上存在點,且),使得經過、、三點的圓和拋物線在點處有相同的切線.
設經過、、三點的圓的方程為,
 
整理得 .                 ①
∵函數的導數為,
∴拋物線在點處的切線的斜率為
∴經過、、三點的圓在點處的切線斜率為
,∴直線的斜率存在.∵圓心的坐標為,
,即.      ②
,由①、②消去,得. 即
,∴.故滿足題設的點存在,其坐標為
解法2:(I)設,兩點的坐標為,且
,可得的中點,即
顯然直線軸不垂直,設直線的方程為,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

,分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點,過的直線與E相交于A、B兩點,且,,成等差數列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的右焦點,且,設短軸的一個端點為,原點到直線的距離為,過原點和軸不重合的直線與橢圓相交于兩點,且.
(1)求橢圓的方程;
(2)是否存在過點的直線與橢圓相交于不同的兩點,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點為F(1,0),離心率為,P為左頂點。
(1)求橢圓C的方程;
(2)設過點F的直線交橢圓C于A,B兩點,若△PAB的面積為,求直線AB的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
已知直線與曲線交于不同的兩點,為坐標原點.
(1)若,求證:曲線是一個圓;
(2)若,當時,求曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)已知直線與圓的交點為A、B,
(1)求弦長AB;
(2)求過A、B兩點且面積最小的圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
拋物線的焦點與雙曲線的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準線與雙曲線的漸近線圍成的三角形的面積.

查看答案和解析>>
久久精品免费一区二区视