精英家教網 > 高中數學 > 題目詳情

【題目】若函數 ,則滿足方程f(a+1)=f(a)的實數a的值為

【答案】,或
【解析】解:∵函數 ,f(a+1)=f(a)

當a≤1或a≥1,時f(a+1)≠f(a);

當1<a<0,即0<a+1<1時,由f(a+1)=f(a)得(a+1)2+1=a2+1,

解得

當a=0,即a+1=1時,f(a+1)=0≠f(a)=1;

當0<a<1即1<a+1<2時,由f(a+1)=f(a)得(a+1)1=a2+1,

解得 (舍去);

綜上:

所以答案是: ,或

【考點精析】通過靈活運用函數的值,掌握函數值的求法:①配方法(二次或四次);②“判別式法”;③反函數法;④換元法;⑤不等式法;⑥函數的單調性法即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在底面為正方形的四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,PA⊥AD,PA=AD,則異面直線PB與AC所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,M,E,F,N分別為A1B1 , B1C1 , C1D1 , D1A1的中點,求證:
(1)E,F,D,B四點共面;
(2)面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,E,F分別為棱AB,CC1的中點,在平面ADD1A1內且與平面D1EF平行的直線(
A.有無數條
B.有2條
C.有1條
D.不存在

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,側面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,設平面PAD∩平面PBC=l.
(Ⅰ)求證:l∥平面ABCD;
(Ⅱ)求證:PB⊥BC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓M的圓心M在x軸上,半徑為1,直線 ,被圓M所截的弦長為 ,且圓心M在直線l的下方. (Ⅰ)求圓M的方程;
(Ⅱ)設A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圓M是△ABC的內切圓,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)滿足對任意的兩個不相等的正數x1 , x2 , 下列三個式子:f(x1﹣x2)+f(x2﹣x1)=0,(x1﹣x2)(f(x1)﹣f(x2))<0,f( )> 都恒成立,則f(x)可能是(
A.f(x)=
B.f(x)=﹣x2
C.f(x)=﹣tanx
D.f(x)=|sinx|

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,是奇函數且在(0,+∞)上單調遞減的是(
A.y=x﹣1
B.y=( x
C.y=x3
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,AB⊥B1C. (Ⅰ)證明:AC=AB1;
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视