精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知四棱錐P﹣ABCD,側面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,設平面PAD∩平面PBC=l.
(Ⅰ)求證:l∥平面ABCD;
(Ⅱ)求證:PB⊥BC.

【答案】證明:(Ⅰ)∵BC平面PAD,AD平面PAD,AD∥BC,

∴BC∥平面PAD

又BC平面PBC,平面PAD∩平面PBC=l,

∴BC∥l.

又∵l平面ABCD,BC平面ABCD,

∴l∥平面ABCD.

(Ⅱ)取AD中點O,連OP、OB,

由已知得:OP⊥AD,OB⊥AD,

又∵OP∩OB=O,

∴AD⊥平面POB,

∵BC∥AD,

∴BC⊥平面POB,

∵PB平面POB,

∴BC⊥PB.


【解析】(Ⅰ)由已知利用線面平行的判定可證BC∥平面PAD,利用線面平行的性質可證BC∥l,進而利用線面平行的判定證明l∥平面ABCD.(Ⅱ)取AD中點O,連OP、OB,由已知得:OP⊥AD,OB⊥AD,利用線面垂直的判定可證AD⊥平面POB,由BC∥AD,可證BC⊥平面POB,利用線面垂直的性質即可證明BC⊥PB.
【考點精析】本題主要考查了直線與平面平行的判定和直線與平面垂直的性質的相關知識點,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;垂直于同一個平面的兩條直線平行才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某百貨公司1~6月份的銷售量x與利潤y的統計數據如表:

月份

1

2

3

4

5

6

銷售量x(萬件)

10

11

13

12

8

6

利潤y(萬元)

22

25

29

26

16

12

(參考公式: = )= ,
(1)根據2~5月份的統計數據,求出y關于x的回歸直線方程 ;
(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差均不超過2萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x∈R,用[x]表示不超過x的最大整數,記{x}=x[x],若a∈(0,1),且 ,則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=ln ,則f(x)是(
A.奇函數,且在(0,+∞)上單調遞減
B.奇函數,且在(0,+∞)上單凋遞增
C.偶函數,且在(0,+∞)上單調遞減
D.偶函數,且在(0,+∞)上單凋遞增

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三棱錐S﹣ABC及其三視圖中的正視圖和側視圖如圖所示,則棱SB的長為;直線SB與AC所成角的余弦值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數 ,則滿足方程f(a+1)=f(a)的實數a的值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在棱長為2的正方體內有一四面體A﹣BCD,其中B,C分別為正方體兩條棱的中點,其三視圖如圖所示,則四面體A﹣BCD的體積為(

A.
B.2
C.
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期內,當x= 時,f(x)取得最大值3,當x=﹣ 時,f(x)取得最小值﹣3. (Ⅰ)求函數f(x)的解析式;
(Ⅱ)求函數f(x)的單調遞減區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比數列,公比不為1.
(1)求數列{an}的通項公式;
(2)設bn= ,求數列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视