【題目】已知x∈R,用[x]表示不超過x的最大整數,記{x}=x[x],若a∈(0,1),且 ,則實數a的取值范圍是 .
【答案】[
【解析】解:根據{x}=x[x],以及a∈(0,1),當0<a< 時,{a}=a[a]=a,{a+
}=a+
[a+
]=a+
,此時,{a }<{a+
};
當a= 時,{a}=a[a]=a,{a+
}=a+
[a+
]=a+
1=0,此時,{a}>{a+
};
當1>a 時,{a}=a[a]=a,{a+
}=a+
[a+
]=a+
1=a
,此時,{a}>{a+
};
故實數a的取值范圍是[ ,所以答案是是[
【考點精析】本題主要考查了函數的最值及其幾何意義的相關知識點,需要掌握利用二次函數的性質(配方法)求函數的最大(。┲担焕脠D象求函數的最大(。┲担焕煤瘮祮握{性的判斷函數的最大(。┲挡拍苷_解答此題.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C對應邊分別是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x|2a﹣x|+2x,a∈R.
(1)若a=0,判斷函數y=f(x)的奇偶性,并加以證明;
(2)若函數f(x)在R上是增函數,求實數a的取值范圍;
(3)若存在實數a∈[﹣2,2],使得關于x的方程f(x)﹣tf(2a)=0有三個不相等的實數根,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的程序框圖所表示的算法功能是輸出( )
A.使1×2×4×6××n≥2017成立的最小整數n
B.使1×2×4×6××n≥2017成立的最大整數n
C.使1×2×4×6××n≥2017成立的最小整數n+2
D.使1×2×4×6××n≥2017成立的最大整數n+2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,M,E,F,N分別為A1B1 , B1C1 , C1D1 , D1A1的中點,求證:
(1)E,F,D,B四點共面;
(2)面AMN∥平面EFDB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定圓C:x2+(y﹣3)2=4,定直線m;x+3y+6=0,過A(﹣1,0)的一條動直線l與直線相交于N,與圓C相交于P,Q兩點,
(1)當l與m垂直時,求出N點的坐標,并證明:l過圓心C;
(2)當|PQ|=2 時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,側面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,設平面PAD∩平面PBC=l.
(Ⅰ)求證:l∥平面ABCD;
(Ⅱ)求證:PB⊥BC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,當x≥0時,f(x)=|x﹣1|,若方程f(x)= 有4個不相等的實根,則實數a的取值范圍是( )
A.(﹣ ,1)
B.( ,1)
C.( ,1)
D.(﹣1, )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com