【題目】如圖1,有一邊長為2的正方形ABCD,E是邊AD的中點,將沿著直線BE折起至
位置(如圖2),此時恰好
,點
在底面上的射影為O.
(1)求證:;
(2)求直線與平面BCDE所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x元.根據市場調查,須有,
,
,同時日銷售量m(單位:個)與
成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數關系式;
(2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數與
的圖象在
上有且只有一個公共點)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視傳媒公司為了解某地區觀眾對某類休育節目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖:
將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(1)根據已知條件完成下面的列聯表,并據此資料判斷是否有
的把握認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
(2)將日均收看讀體育節目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
附.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,且其中一個焦點的坐標為
.
(1)求橢圓的方程;
(2)過橢圓右焦點
的直線
與橢圓交于兩點
,在
軸上是否存在點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是定義在
上的奇函數,且
.若對任意的
,
,都有
.
(1)判斷函數的單調性,并說明理由;
(2)若,求實數
的取值范圍;.
(3)若不等式對任意
和
都恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地空氣中出現污染,須噴灑一定量的去污劑進行處理.據測算,每噴灑1個單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數關系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(Ⅰ)若一次噴灑4個單位的去污劑,則去污時間可達幾天?
(Ⅱ)若第一次噴灑2個單位的去污劑,6天后再噴灑
個單位的去污劑,要使接下來的4天中能夠持續有效去污,試求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com