【題目】銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,a=2bsinA,則cosA+sinC的取值范圍是 .
【答案】( ,
)
【解析】解:已知等式a=2bsinA利用正弦定理化簡得:sinA=2sinBsinA, ∵sinA≠0,
∴sinB= ,
∵B為銳角,
∴B=30°,即A+C=150°,
∴cosA+sinC=cosA+sin(150°﹣A)=cosA+ cosA+
sinA=
cosA+
sinA=
(
cosA+
sinA)=
sin(A+60°),
∵60°<A<90°,∴120°<A+60°<150°,
∴ <sin(A+60°)<
,即
<
sin(A+60°)<
,
則cosA+sinC的取值范圍是( ,
).
所以答案是:( ,
).
【考點精析】認真審題,首先需要了解余弦定理的定義(余弦定理:;
;
).
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比較f(x)與g(x)的大;
(2)解不等式f(x)≤0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣alnx(a∈R)
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數f(x)的單調區間和極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設 ,g(x)=x3﹣x2﹣3.
(1)當a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求滿足上述條件的最大整數M;
(3)如果對任意的 ,都有f(s)≥g(t)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
有一個零點為4,且滿足
.
(1)求實數和
的值;
(2)試問:是否存在這樣的定值,使得當
變化時,曲線
在點
處的切線互相平行?若存在,求出
的值;若不存在,請說明理由;
(3)討論函數在
上的零點個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com