【題目】已知集合A={y|y=x2﹣2x﹣3,x∈R},B={x|log2x<﹣1},C={k|函數f(x)= 在(0,+∞)上是增函數}.
(1)求A,B,C;
(2)求A∩C,(UB)∪C.
【答案】
(1)解:A={y|y=x2﹣2x﹣3,x∈R}={y|y=(x﹣1)2﹣4}=[﹣4,+∞)
B={x|log2x<﹣1}=(0, )
C={k|函數f(x)= 在(0,+∞)上是增函數}={k|1﹣4k<0}=(
,+∞)
(2)解:
(UB)∪C={x|x≤0或x≥ }∪(
,+∞)=(﹣∞,0]∪(
,+∞).
【解析】1、本題考查的是,二次函數y=(x﹣1)2﹣4的值域問題開口向上有最小值[﹣4,+∞)以及對數不等式log2x<﹣1的解法。
2、本題考查的是集合的交、并、補集的不等式運算。
【考點精析】利用交、并、補集的混合運算對題目進行判斷即可得到答案,需要熟知求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.
科目:高中數學 來源: 題型:
【題目】如圖,有一塊邊長為1(百米)的正方形區域ABCD.在點A處有一個可轉動的探照燈,其照射角∠PAQ始終為45°(其中點P,Q分別在邊BC,CD上),設BP=t.
(I)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值;
(Ⅱ)設探照燈照射在正方形ABCD內部區域的面積S(平方百米),求S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC
(2)求證:平面PAC⊥平面BDD1B1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為( ,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+ 與雙曲線C恒有兩個不同的交點A和B,且
>2(其中O為原點).求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數,當x∈[0,+∞)時,f(x)=2x+x﹣m(m為常數).
(1)求常數m的值.
(2)求f(x)的解析式.
(3)若對于任意x∈[﹣3,﹣2],都有f(k4x)+f(1﹣2x+1)>0成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:函數f(x)=logax在區間(0,+∞)上是單調遞增函數;命題q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0對任意實數x恒成立.若p∨q為真命題,且p∧q為假命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O為Rt△ABC的外接圓,AB=AC,BC=4,過圓心O的直線l交圓O于P,Q兩點,則 的取值范圍是( )
A.[﹣8,﹣1]
B.[﹣8,0]
C.[﹣16,﹣1]
D.[﹣16,0]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 為空間中兩條不同的直線,
為空間中兩個不同的平面,下列命題正確的是( )
A.若 則
B.若 ,則
C.若 在
內的射影互相平行,則
D.若 ,則
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com