【題目】已知數列中,
且
且
.
(1)證明:數列為等差數列;
(2)求數列的前
項和
.
【答案】(1)證明見解析;(2) .
【解析】試題分析:(1)要證明數列為等差數列,只需證明
為常數)即可;(2)由等差數列的通項公式
,進而可求
,利用錯位相減法可求數列的前
項和
.
試題解析:(1)設
=
所以數列為首項是2公差是1的等差數列.
(2)由(1)知,
①
②
②-①,得
.
【 方法點睛】本題主要考查等差數列的定義以及錯位相減法求數列的的前 項和,屬于中檔題.一般地,如果數列
是等差數列,
是等比數列,求數列
的前
項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數列
的公比,然后作差求解, 在寫出“
”與“
” 的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“
”的表達式.
科目:高中數學 來源: 題型:
【題目】已知定點,定直線
,動點
到點
的距離與到直線
的距離之比等于
.
(1)求動點的軌跡
的方程;
(2)設軌跡與
軸負半軸交于點
,過點
作不與
軸重合的直線交軌跡
于兩點
,直線
分別交直線
于點
.試問:在
軸上是否存在定點
,使得
?若存在,求出定點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx+ (a,b∈R)在點(1,f(1))處的切線方程為x﹣2y=0.
(1)求a,b的值;
(2)當x>1時,f(x)﹣kx<0恒成立,求實數k的取值范圍;
(3)證明:當n∈N* , 且n≥2時, +
+
+…+
>
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設平面內有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點.若用f(n)表示這n條直線交點的個數,當n>4時,f(n)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】實數m取什么數值時,復數z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實數;
(2)虛數;復數z=m2﹣1+(m2﹣m﹣2)i是虛數, ∴m2﹣m﹣2≠0
∴m≠﹣1.m≠2
(3)純虛數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1).選修4—1:幾何證明選講
如圖,CD是圓O的切線,切點為D,CA是過圓心O的割線且交圓O于點B,DA=DC.求證: CA=3CB.
(2).選修4—2:矩陣與變換
設二階矩陣A=.
(Ⅰ)求A-1;
(Ⅱ)若曲線C在矩陣A對應的變換作用下得到曲線C:6x2-y2=1,求曲線C的方程.
(3).選修4—4:坐標系與參數方程
在平面直角坐標系xOy中,直線l的參數方程為(t為參數),圓C的參數方程為
(θ為參數).若直線l與圓C相切,求實數a的值.
(4).選修4—5:不等式選講
解不等式:|x-2|+|x+1|≥5.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是偶函數,且在(0,+∞)內是減函數,又f(﹣3)=0,則xf(x)>0的解集是( )
A.{x|﹣3<x<0或x>3}
B.{x|x<﹣3或x>3}
C.{x|﹣3<x<0或x<x<3}
D.{x|x<﹣3或0<x<3}
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com