【題目】如圖,矩形中,
為
的中點,將
沿直線
翻折成
,連結
,
為
的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得
B.翻折過程中,的長是定值
C.若,則
D.若,當三棱錐
的體積最大時,三棱錐
的外接球的表面積是
【答案】BD
【解析】
對于選項A,取中點
,取
中點
,連結
,
,通過假設
,推出
平面
,得到
,則
,即可判斷;
對于選項B,在判斷A的圖基礎上,連結交
于點
,連結
,易得
,由余弦定理,求得
為定值即可;
對于選項C,取中點
,
,
,由線面平行的性質定理導出矛盾,即可判斷;
對于選項D,易知當平面與平面
垂直時,三棱錐
的體積最大,說明此時
中點
為外接球球心即可.
如圖1,取中點
,取
中點
,連結
交
于點
,連結
,
,
,
則易知,
,
,
,
,
由翻折可知,,
,
對于選項A,易得,則
、
、
、
四點共面,由題可知
,若
,可得
平面
,故
,則
,不可能,故A錯誤;
對于選項B,易得,
在中,由余弦定理得
,
整理得,
故為定值,故B正確;
如圖2,取中點
,取
中點
,連結
,
,
,
,,
對于選項C,由得
,若
,易得
平面
,故有
,從而
,顯然不可能,故C錯誤;
對于選項D,由題易知當平面與平面
垂直時,三棱錐B1﹣AMD的體積最大,此時
平面
,則
,由
,易求得
,
,故
,因此
,
為三棱錐
的外接球球心,此外接球半徑為
,表面積為
,故D正確.
故選:BD.
科目:高中數學 來源: 題型:
【題目】(12分)若數列{an}是的遞增等差數列,其中的a3=5,且a1,a2,a5成等比數列,
(1)求{an}的通項公式;
(2)設bn= ,求數列{bn}的前項的和Tn.
(3)是否存在自然數m,使得 <Tn<
對一切n∈N*恒成立?若存在,求出m的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=6cos2sinωx﹣3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形
(1)求ω的值及函數f(x)的表達式;
(2)若f(x0),且x0∈(
),求f(x0+1)的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網購是現在比較流行的一種購物方式,現隨機調查50名個人收入不同的消費者是否喜歡網購,調查結果表明:在喜歡網購的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網購的25人中有6人是低收入的人,另外19人是高收入的人.
喜歡網購 | 不喜歡網購 | 總計 | |
低收入的人 | |||
高收入的人 | |||
總計 |
(Ⅰ)試根據以上數據完成列聯表,并用獨立性檢驗的思想,指出有多大把握認為是否喜歡網購與個人收入高低有關系;
(Ⅱ)將5名喜歡網購的消費者編號為1、2、3、4、5,將5名不喜歡網購的消費者編號也記作1、2、3、4、5,從這兩組人中各任選一人進行交流,求被選出的2人的編號之和為2的倍數的概率.
參考公式:
參考數據:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,
是它的上頂點,點
各不相同且均在橢圓上.
(1)若恰為橢圓長軸的兩個端點,求
的面積;
(2)若,求證:直線
過一定點;
(3)若,
的外接圓半徑為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
經過點
,曲線
的直角坐標方程為
.
(1)求曲線的普通方程,曲線
的極坐標方程;
(2)若,
是曲線
上兩點,當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一種擲骰子走跳棋的游戲:棋盤上標有第0站、第1站、第2站、…、第100站,共101站,設棋子跳到第n站的概率為,一枚棋子開始在第0站,棋手每擲一次骰子,棋子向前跳動一次.若擲出奇數點,棋子向前跳一站;若擲出偶數點,棋子向前跳兩站,直到棋子跳到第99站(獲勝)或第100站(失敗)時,游戲結束(骰子是用一種均勻材料做成的立方體形狀的游戲玩具,它的六個面分別標有點數1,2,3,4,5,6).
(1)求,
,
,并根據棋子跳到第n站的情況,試用
和
表示
;
(2)求證:為等比數列;
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com