精英家教網 > 高中數學 > 題目詳情

【題目】(1)如圖(1)所示,橢圓的中心在原點,焦點F1、F2在x軸上,A、B是橢圓的頂點,P是橢圓上一點,且PF1⊥x軸,PF2∥AB,求此橢圓的離心率;

(2)如圖(2)所示,雙曲線的一個焦點為F,虛軸的一個端點為B,如果直線FB與該雙曲線的一條漸近線垂直,求此雙曲線的離心率.

【答案】(1);(2)

【解析】

1)根據軸得到點坐標,然后表示出的坐標,由轉化為坐標關系,得到關系,求出離心率.

2)根據題意得到的斜率和雙曲線漸近線的斜率,再由它們互相垂直,得到兩者斜率相乘等于,得到的關系,求出離心率.

(1)依題意、、

,,由得:

.

(2)依題意,

;漸近線斜率:

直線與該雙曲線的一條漸近線垂直

解得

由因為,所求

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某電力公司在工程招標中是根據技術、商務、報價三項評分標準進行綜合評分的,按照綜合得分的高低進行綜合排序,綜合排序高者中標。分值權重表如下:

總分

技術

商務

報價

100%

50%

10%

40%

技術標、商務標基本都是由公司的技術、資質、資信等實力來決定的。報價表則相對靈活,報價標的評分方法是:基準價的基準分是68分,若報價每高于基準價1%,則在基準分的基礎上扣0.8分,最低得分48分;若報價每低于基準價1%,則在基準分的基礎上加0.8分,最高得分為80分。若報價低于基準價15%以上(不含15%)每再低1%,在80分在基礎上扣0.8分。在某次招標中,若基準價為1000(萬元)。甲、乙兩公司綜合得分如下表:

公司

技術

商務

報價

80分

90分

70分

100分

甲公司報價為1100(萬元),乙公司的報價為800(萬元)則甲,乙公司的綜合得分,分別是

A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數的單調區間;

(2)是否存在實數,使得至少有一個,使成立,若存在,求出實數的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】0,12,34這五個數字組成無重復數字的自然數.

(Ⅰ)在組成的三位數中,求所有偶數的個數;

(Ⅱ)在組成的三位數中,如果十位上的數字比百位上的數字和個位上的數字都小,則稱這個數為“凹數”,如301,423等都是“凹數”,試求“凹數”的個數;

(Ⅲ)在組成的五位數中,求恰有一個偶數數字夾在兩個奇數數字之間的自然數的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.

1)求恰好摸出1個黑球和1個紅球的概率:

2)求至少摸出1個黑球的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|xa|-x(a>0).

(1)若a=3,解關于x的不等式f(x)<0;

(2)若對于任意的實數x,不等式f(x)-f(xa)<a2恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為,且橢圓四個頂點構成的菱形面積為

(1)求橢圓C的方程;

(2)若直線l :y=x+m與橢圓C交于M,N兩點,以MN為底邊作等腰三角形,頂點為P(3,-2),求m的值及△PMN的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某興趣小組測量電視塔AE的高度H(單位m),如示意圖,垂直放置的標桿BC高度h=4m,仰角∠ABE=α,∠ADE=β

1)該小組已經測得一組α、β的值,tanα=1.24,tanβ=1.20,,請據此算出H的值

2)該小組分析若干測得的數據后,發現適當調整標桿到電視塔的距離d(單位m),使αβ之差較大,可以提高測量精確度,若電視塔實際高度為125m,問d為多少時,α-β最大

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓的離心率是,一個頂點是

)求橢圓的方程;

)設是橢圓上異于點的任意兩點,且.試問:直線是否恒過一定點?若是,求出該定點的坐標;若不是,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视