【題目】已知函數f(x)=(4﹣x)ex﹣2 , 試判斷是否存在m使得y=f(x)與直線3x﹣2y+m=0(m為確定的常數)相切?
【答案】解:函數f(x)=(4﹣x)ex﹣2 , 導數為f′(x)=(3﹣x)ex﹣2 ,
設g(x)=(3﹣x)ex﹣2 , 則g'(x)=(2﹣x)ex﹣2 ,
由x>2時,g'(x)<0,g(x)遞減;x<2時,g'(x)>0,g(x)遞增.
可推得g(x)極大值為g(2)=1,也為最大值.
假設y=f(x)與直線3x﹣2y+m=0(m為確定的常數)相切,
則切線的斜率為 ,
由于切線的斜率的最大值為1.
所以 無解.
所以不存在m滿足題意.
【解析】求出f(x)的導數,可得切線的斜率,設g(x)=(3﹣x)ex﹣2 , 求出導數和單調區間,可得極值也為最值,假設存在m滿足題意,由直線方程可得斜率大于最值,即可判斷不存在.
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , 且Sn= nan+an﹣c(c是常數,n∈N*),a2=6.
(Ⅰ)求c的值及數列{an}的通項公式;
(Ⅱ)設bn= ,數列{bn}的前n項和為Tn , 若2Tn>m﹣2對n∈N*恒成立,求最大正整數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+x2﹣xlna﹣b(b∈R,a>0且a≠1),e是自然對數的底數.
(1)討論函數f(x)在(0,+∞)上的單調性;
(2)當a>1時,若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,求實數a的取值范圍.(參考公式:(ax)′=axlna)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),橢圓C的右焦點F的坐標為
,短軸長為2.
(I)求橢圓C的方程;
(II)若點P為直線x=4上的一個動點,A,B為橢圓的左、右頂點,直線AP,BP分別與橢圓C的另一個交點分別為M,N,求證:直線MN恒過點E(1,0).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區超市購進了A,B,C,D四種新產品,為了解新產品的銷售情況,該超市隨機調查了15位顧客(記為ai , i=1,2,3,…,15)購買這四種新產品的情況,記錄如下(單位:件):
顧 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 |
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若該超市每天的客流量約為300人次,一個月按30天計算,試估計產品A的月銷售量(單位:件);
(Ⅱ)為推廣新產品,超市向購買兩種以上(含兩種)新產品的顧客贈送2元電子紅包.現有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的總金額為X,求隨機變量X的分布列和數學期望;
(Ⅲ)若某顧客已選中產品B,為提高超市銷售業績,應該向其推薦哪種新產品?(結果不需要證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是首項 ,公比
的等比數列.設
(n∈N*). (Ⅰ)求證:數列{bn}為等差數列;
(Ⅱ)設cn=an+b2n , 求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , Sm﹣1=13,Sm=0,Sm+1=﹣15.其中m∈N*且m≥2,則數列{ }的前n項和的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com