【題目】設等差數列{an}的前n項和為Sn , 且Sn= nan+an﹣c(c是常數,n∈N*),a2=6.
(Ⅰ)求c的值及數列{an}的通項公式;
(Ⅱ)設bn= ,數列{bn}的前n項和為Tn , 若2Tn>m﹣2對n∈N*恒成立,求最大正整數m的值.
【答案】解:(Ⅰ)∵ ,當n=1時,
,
解得a1=2c,
當n=2時,S2=a2+a2﹣c,
即a1+a2=a2+a2﹣c,
解得a2=3c,∴3c=6,
解得c=2.
則a1=4,數列{an}的公差d=a2﹣a1=2,
∴an=a1+(n﹣1)d=2n+2.
(Ⅱ)∵ ,
∴ ①
②
①﹣②得 ,
∴ ,
∵ ,
∴數列{Tn}單調遞增,T1最小,最小值為 ,
∴ ,
∴m<3,
故正整數m的最大值為2
【解析】(I)利用遞推關系、等差數列的通項公式即可得出;(II)利用“錯位相減法”、等比數列的前n項和公式即可得出.
【考點精析】掌握數列的前n項和和數列的通項公式是解答本題的根本,需要知道數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.
科目:高中數學 來源: 題型:
【題目】我國唐代詩人王維詩云:“明月松間照,清泉石上流”,這里明月和清泉,都是自然景物,沒有變,形容詞“明”對“清”,名詞“月”對“泉”,詞性不變,其余各詞均如此.變化中的不變性質,在文學和數學中都廣泛存在.比如我們利用幾何畫板軟件作出拋物線C:x2=y的圖象(如圖),過交點F作直線l交C于A、B兩點,過A、B分別作C的切線,兩切線交于點P,過點P作x軸的垂線交C于點N,拖動點B在C上運動,會發現 是一個定值,該定值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知焦點在y軸上的橢圓E的中心是原點O,離心率等于 ,以橢圓E的長軸和短軸為對角線的四邊形的周長為4
,直線,l:y=kx+m與y軸交干點P,與橢圓E相交于A、B兩個點. (Ⅰ)求橢圓E的方程;
(Ⅱ)若 =3
,求m2的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,CA=CB,側面ABB1A1是邊長為2的正方形,點E,F分別在線段AAl , A1B1上,且AE= ,A1F=
,CE⊥EF,M為AB中點 (Ⅰ)證明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數f(x)=xα的圖象經過點(2, ),則f(4)的值等于
;
④已知向量 =(3,﹣4),
=(2,1),則向量
在向量
方向上的投影是
.
說法錯誤的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣alnx(a∈R)
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數f(x)的極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinωx,其中常數ω>0.
(Ⅰ)令ω=1,求函數 在
上的最大值;
(Ⅱ)若函數 的周期為π,求函數g(x)的單調遞增區間,并直接寫出g(x)在
的零點個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com