精英家教網 > 高中數學 > 題目詳情

【題目】設x∈R,記不超過x的最大整數為[x],例如[2.34]=2,[﹣1.5]=﹣2,令{x}=x﹣[x],則
A.是等差數列但不是等比數列
B.既是等差數列也是等比數列
C.是等比數列但不是等差數列
D.既不是等差數列也不是等比數列

【答案】C
【解析】解:根據題意, ≈1.6,

則[ ]=1,{ }= ﹣[ ]=

,即 ,1, ,

分析可得:( )×( )=12, 成等比數列,

)+( )= ≠2×1, 不成等差數列,

故選:C.

【考點精析】根據題目的已知條件,利用等差關系的確定和等比關系的確定的相關知識可以得到問題的答案,需要掌握如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,即=d ,(n≥2,n∈N)那么這個數列就叫做等差數列;等比數列可以通過定義法、中項法、通項公式法、前n項和法進行判斷.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為: =0.85x﹣85.71,則下列結論中不正確的是( )
A.3與3x2+2ax+b=0具有正的線性相關關系
B.回歸直線過樣本點的中心( ,
C.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg
D.若該大學某女生身高增加1cm,則其體重約增加0.85kg

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且Sn=2an﹣3n(n∈N+).
(1)求a1 , a2 , a3的值;
(2)設bn=an+3,證明數列{bn}為等比數列,并求通項公式an

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為(﹣1,1),且同時滿足下列條件:
①f(x)是奇函數;
②f(x)在定義域上單調遞減;
③f(1﹣a)+f(1﹣a2)<0.
求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)=ax2﹣2ax﹣1+b(a>0)在區間[2,3]上有最大值4和最小值1.設f(x)=
(1)求a,b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的首項a1=1,且an+1=2an+1(n∈N*
(Ⅰ)證明數列{an+1}是等比數列,并求數列{an}的通項公式;
(Ⅱ)設bn= ,求數列{bn}的前n項和Sn
(Ⅲ)在條件(Ⅱ)下對任意正整數n,不等式Sn+ ﹣1>(﹣1)na恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)
(1)若直線x﹣y﹣2=0過拋物線C的焦點,求拋物線C的方程,并求出準線方程;
(2)設p=2,A,B是C上異于坐標原點O的兩個動點,滿足OA⊥OB,△ABO的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量
(1)求函數f(x)的解析式,并求函數f(x)的單調增區間;
(2)畫出函數f(x)在[0,2π]上的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sin2x﹣cos2x,有下列四個結論:①f(x)的最小正周期為π;②f(x)在區間[﹣ , ]上是增函數;③f(x)的圖象關于點( ,0)對稱;④x= 是f(x)的一條對稱軸.其中正確結論的個數為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视