【題目】設定義在R上的函數f(x)滿足f(x+2)=-f(x),且 ,則函數g(x)=lg x的圖象與函數f(x)的圖象的交點個數為( )
A.3
B.5
C.9
D.10
【答案】C
【解析】因為函數f(x)滿足f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函數f(x)是以4為周期的周期函數,所以在同一平面直角坐標系內作出函數f(x)的圖象與函數g(x)=lg x的圖象如圖所示,由圖可知兩曲線有9個交點.
所以答案是:C.
【考點精析】根據題目的已知條件,利用函數的零點與方程根的關系的相關知識可以得到問題的答案,需要掌握二次函數的零點:(1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.
科目:高中數學 來源: 題型:
【題目】設集合U={1,2,…,100},TU.對數列{an}(n∈N*),規定:
①若T=,則ST=0;
②若T={n1 , n2 , …,nk},則ST=a +a
+…+a
.
例如:當an=2n,T={1,3,5}時,ST=a1+a3+a5=2+6+10=18.
已知等比數列{an}(n∈N*),a1=1,且當T={2,3}時,ST=12,求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】所謂正三棱錐,指的是底面為正三角形,頂點在底面上的射影為底面三角形中心的三棱錐,在正三棱錐 中,
是
的中點,且
,底面邊長
,則正三棱錐
的體積為 , 其外接球的表面積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓 經過
為坐標原點,線段
的中點在圓
上.
(1)求 的方程;
(2)直線 不過曲線
的右焦點
,與
交于
兩點,且
與圓
相切,切點在第一象限,
的周長是否為定值?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】候鳥每年都要隨季節的變化而進行大規模地遷徙,研究某種鳥類的專家發現,該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關系為:v=a+blog3 (其中a,b是實數).據統計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業甲將經營狀況良好的某種消費品專賣店以5.8萬元的優惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業乙,并約定從該店經營的利潤中,首先保證企業乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,島 、
相距
海里.上午9點整有一客輪在島
的北偏西
且距島
海里的
處,沿直線方向勻速開往島
,在島
停留
分鐘后前往
市.上午
測得客輪位于島
的北偏西
且距島
海里的
處,此時小張從島
乘坐速度為
海里/小時的小艇沿直線方向前往
島換乘客輪去
市.
(Ⅰ)若 ,問小張能否乘上這班客輪?
(Ⅱ)現測得 ,
.已知速度為
海里/小時(
)的小艇每小時的總費用為(
)元,若小張由島
直接乘小艇去
市,則至少需要多少費用?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com