科目:高中數學 來源: 題型:解答題
(2011•湖北)(1)已知函數f(x)=lnx﹣x+1,x∈(0,+∞),求函數f(x)的最大值;
(2)設a1,b1(k=1,2…,n)均為正數,證明:
①若a1b1+a2b2+…anbn≤b1+b2+…bn,則…
≤1;
②若b1+b2+…bn=1,則≤
…
≤b12+b22+…+bn2.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于函數,若在定義域存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)設是定義在
上的“局部奇函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠產生的廢氣經過過濾后排放,過濾過程中廢氣的污染物數量與時間
小時
間的關系為
.如果在前
個小時消除了
的污染物,試求:
(1)個小時后還剩百分之幾的污染物?
(2)污染物減少所需要的時間.(參考數據:
)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲廠以x千克/小時的速度運輸生產某種產品(生產條件要求1≤x≤10),每小時可獲得利潤是100(5x+1-)元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知美國蘋果公司生產某款iPhone手機的年固定成本為40萬美元,每生產1萬只還需另投入16萬美元.設蘋果公司一年內共生產該款iPhone手機x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬美元)關于年產量x(萬只)的函數解析式;
(2)當年產量為多少萬只時,蘋果公司在該款iPhone手機的生產中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=lg(ax-bx)(a>1>b>0).
(1)求函數y=f(x)的定義域;
(2)在函數y=f(x)的圖象上是否存在不同的兩點,使過此兩點的直線平行于x軸;
(3)當a、b滿足什么關系時,f(x)在區間上恒取正值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠的固定成本為3萬元,該工廠每生產100臺某產品的生產成本為1萬元,設生產該產品x(百臺),其總成本為g(x)萬元(總成本=固定成本+生產成本),并且銷售收人r(x)滿足假定該產品產銷平衡,根據上述統計規律求:
(1)要使工廠有盈利,產品數量x應控制在什么范圍?
(2)工廠生產多少臺產品時盈利最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com