【題目】如圖,透明塑料制成的長方體ABCD﹣A1B1C1D1內灌進一些水,固定容器底面一邊BC于水平地面上,再將容器傾斜,隨著傾斜度不同,有下面五個命題:
①有水的部分始終呈棱柱形;
②沒有水的部分始終呈棱柱形;
③水面EFGH所在四邊形的面積為定值;
④棱A1D1始終與水面所在平面平行;
⑤當容器傾斜如圖(3)所示時,BEBF是定值.
其中所有正確命題的序號是 ____.
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為,現采用隨機模擬的方法估計該運動員三次投籃都命中的概率:先由計算機產生0到9之間取整數值的隨機數,指定1,2,3,4,5表示命中;6,7,8,9,0表示不命中,再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數:
162 966 151 525 271 932 592 408 569 683
471 257 333 027 554 488 730 163 537 989
據此估計,該運動員三次投籃都命中的概率為
A. 0.15 B. 0.2 C. 0.25 D. 0.35
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P—ABCD,底面ABCD是邊長為4的菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(Ⅰ)求證:AE⊥PD;
(Ⅱ)若PA=4,求二面角E—AF—C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通常用、
、
分別表示
的三個內角
、
、
所對的邊長,
表示
的外接圓半徑.
(1)如圖,在以為圓心,半徑為
的圓
中,
、
是圓
的弦,其中
,
,角
是銳角,求弦
的長;
(2)在中,若
是鈍角,求證:
;
(3)給定三個正實數、
、
,其中
,問
、
、
滿足怎樣的關系時,以
、
為邊長,
為外接圓半徑的
不存在、存在一個或存在兩個(全等的三角形算作同一個)?在
存在的情況下,用
、
、
表示
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(1)求這4個人中恰有2個人去參加甲游戲的概率;
(2) 用X表示這4個人中去參加乙游戲的人數,求隨機變量X的分布列與數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為進行“陽光運動一小時”活動,計劃在一塊直角三角形的空地上修建一個占地面積為
(平方米)的矩形
健身場地。如圖,點
在
上,點
在
上,且
點在斜邊
上,已知
米,
米,
,設矩形
健身場地每平方米的造價為
元,再把矩形
以外(陰影部分)鋪上草坪,每平方米的造價為
元(
為正的常數).
(1)試用表示
,并指出如何設計矩形的長和寬,才能使得矩形的面積最大,且求出
的最大值;
(2)求總造價關于面積
的函數
,說明如何選取
,使總造價
最低(不要求求出最低造價).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018屆天津市耀華中學高三上學期第三次月考】已知橢圓的一個焦點在直線
上,且離心率
.
(1)求該橢圓的方程;
(2)若與
是該橢圓上不同的兩點,且線段
的中點
在直線
上,試證:
軸上存在定點
,對于所有滿足條件的
與
,恒有
;
(3)在(2)的條件下, 能否為等腰直角三角形?并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場購進一種每件價格為90元的新商品,在商場試銷時發現:銷售單價(元/件)與每天銷售量
(件)之間滿足如圖所示的關系.
(1)求出與
之間的函數關系式;
(2)寫出每天的利潤與銷售單價
之間的函數關系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com