【題目】如圖,在四棱錐中,底面
為直角梯形,
∥
,
,平面
⊥底面
,
為
的中點,
,
,
.
(Ⅰ)求證:平面⊥平面
;
(Ⅱ)在棱上是否存在點
使得二面角
大小為
?若存在,求出
的長;若不存在,請說明理由.
【答案】(1)證明見解析;(2)答案見解析.
【解析】試題分析:
(Ⅰ)要證面面垂直,就要證線面垂直,題中由已知可得BD⊥AD,再由面面垂直的性質可得BQ⊥平面PAD,從而可得面面垂直;
(Ⅱ)假設存在,以Q為原點建立解析中所示的空間直角坐標系. 寫出各點坐標,同時設 ,且
,得
,求出平面MBQ,平面CBQ的法向量,由法向量的夾角與二面角的關系求出
,若求出不出
,則說明不存在,求出則說明存在.
試題解析:
(Ⅰ)∵AD // BC,BC=AD,Q為AD的中點,
∴四邊形BCDQ為平行四邊形,∴CD // BQ .
∵∠ADC=90° ∴∠AQB=90° 即QB⊥AD.
又∵平面PAD⊥平面ABCD
且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ平面PQB,∴平面PQB⊥平面PAD.
(Ⅱ)假設存在點點使得二面角
大小為
∵PA=PD,Q為AD的中點, ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如圖,以Q為原點建立空間直角坐標系.
則,
,
,
,
所以 平面BQC的法向量為
由 ,且
,得
又,
設平面MBQ法向量
則
取
∴ 平面MBQ法向量為
.
∵二面角M-BQ-C為30°,
即 解得
.
∴
所以 存在點M滿足時,二面角
大小為
,
且QM的長度為
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左焦點為
,左準線方程為
.
(1)求橢圓的標準方程;
(2)已知直線交橢圓
于
,
兩點.
①若直線經過橢圓
的左焦點
,交
軸于點
,且滿足
,
.求證:
為定值;
②若(
為原點),求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某創業投資公司擬開發某種新能源產品,估計能獲得萬元到
萬元的投資利益,現準備制定一個對科研課題組的獎勵方案:獎金
(單位:萬元)隨投資收益
(單位:萬元)的增加而增加,且獎金不超過
萬元,同時獎金不超過收益的
.
()請分析函數
是否符合公司要求的獎勵函數模型,并說明原因.
()若該公司采用函數模型
作為獎勵函數模型,試確定最小正整數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為4的正方形與矩形
所在平面互相垂直,
分別為
的中點,
.
(1)求證:平面
;
(2)求證:平面
;
(3)在線段上是否存在一點
,使得
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-5:不等式選講]已知函數f(x)=|2x﹣a|+a.
(1)當a=2時,求不等式f(x)≤6的解集;
(2)設函數g(x)=|2x﹣1|,當x∈R時,f(x)+g(x)≥3,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現,當圓內接多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,由此創立了割圓術,利用割圓術劉徽得到了圓周率精確到小數點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為( ) 參考數據: ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(﹣1,0),B(1,0)為雙曲線 ﹣
=1(a>0,b>0)的左右頂點,點M在雙曲線上,△ABM為等腰三角形,且頂角為120°,則該雙曲線的標準方程為( )
A.x2﹣ =1
B.x2﹣ =1
C.x2﹣y2=1
D.x2﹣ =1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com