【題目】已知函數,若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則
的取值范圍為( )
A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)
【答案】B
【解析】
由方程f(x)=a,得到x1,x2關于x=﹣1對稱,且x3x4=1;化簡,利用數形結合進行求解即可.
作函數f(x)的圖象如圖所示,∵方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,
∴x1,x2關于x=﹣1對稱,即x1+x2=﹣2,0<x3<1<x4,則|log2x3|=|log2x4|,
即﹣log2x3=log2x4,則log2x3+log2x4=0,即log2x3x4=0,則x3x4=1;
當|log2x|=1得x=2或,則1<x4≤2;
≤x3<1;
故;
則函數y=﹣2x3+,在
≤x3<1上為減函數,則故當x3=
取得y取最大值y=1,
當x3=1時,函數值y=﹣1.即函數取值范圍是(﹣1,1].
故選:B.
科目:高中數學 來源: 題型:
【題目】已知拋物線C:x2=2py經過點(2,1).
(Ⅰ)求拋物線C的方程及其準線方程;
(Ⅱ)設O為原點,過拋物線C的焦點作斜率不為0的直線l交拋物線C于兩點M,N,直線y=1分別交直線OM,ON于點A和點B.求證:以AB為直徑的圓經過y軸上的兩個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為
,右焦點為
,設M,N是橢圓C上位于x軸上方的兩動點,且直線
與直線
平行,
與
交于點D.
(Ⅰ)求和
的坐標;
(Ⅱ)求的最小值;
(Ⅲ)求證:是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知復數z滿足|z|,z的實部大于0,z2的虛部為2.
(1)求復數z;
(2)設復數z,z2,z﹣z2之在復平面上對應的點分別為A,B,C,求()
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線的焦點為F,圓
,點
為拋物線上一動點.已知當
的面積為
.
(I)求拋物線方程;
(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求
面積的最小值,并求出此時P點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求圓的極坐標方程;
(2)已知射線,若
與圓
交于點
(異于點
),
與直線
交于點
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com