【題目】已知函數.
(1)判斷函數的奇偶性,并說明理由;
(2)若對于任意的恒成立,求滿足條件的實數m的最小值M .
(3)對于(2)中的M,正數a,b滿足,證明:
.
【答案】(1) 當時,
為偶函數, 當
時,既不是奇函數也不是偶函數,理由見解析;(2)2;(3) 證明見解析.
【解析】
(1)對分類討論,結合奇偶性的定義進行判斷可得;
(2)將不等式轉化為對任意的
都成立,再構造函數,利用單調性求出最大值即可得到答案;
(3)由(2)知,所以
,再根據
變形可證.
(1)(i)當m=1時,,
,
因為,
所以為偶函數;
(ii)當時,
,
,
,
,
所以既不是奇函數也不是偶函數.
(2) 對于任意的,即
恒成立,
所以對任意的
都成立,
設,
則為
上的遞減函數,
所以時,
取得最大值1,
所以,即
.
所以.
(3)證明: 由(2)知,
,所以
,
,
,當且僅當
時取等號,①
又
,當且僅當
時取等號,②
由①②得,,
所以,
科目:高中數學 來源: 題型:
【題目】設,數列{bn}滿足:bn+1=2bn+2,且an+1﹣an=bn;
(1)求證:數列{bn+2}是等比數列;
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線焦點為F,
上任一點P在y軸的射影為Q,PQ中點為R,
.
(1)求動點T的軌跡的方程;
(2)直線過F與
從下到上依次交于A,B,與
交于F,M,直線
過F與
從下到上依次交于C,D,與
交于F,N,
,
的斜率之積為-2.
(i)求證:M,N兩點的橫坐標之積為定值;
(ii)設△ACF,△MNF,△BDF的面積分別為,
,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若的值域為
,求
的值;
(Ⅱ)巳,是否存在這祥的實數
,使函數
在區間
內有且只有一個零點.若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知隨機變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<,則( )
A. E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)
B. E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)
C. E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)
D. E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人同時參加一次數學測試,共有20道選擇題,每題均有4個選項,答對得3分,答錯或不答得0分,甲和乙都解答了所有的試題,經比較,他們只有2道題的選項不同,如果甲最終的得分為54分,那么乙的所有可能的得分值組成的集合為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用合適的方法表示下列集合,并說明是有限集還是無限集.
(1)到A、B兩點距離相等的點的集合
(2)滿足不等式的
的集合
(3)全體偶數
(4)被5除余1的數
(5)20以內的質數
(6)
(7)方程的解集
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數記為
,其函數圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后
與
的函數圖象.
給出下列四種說法:
①圖(2)對應的方案是:提高票價,并提高成本;
②圖(2)對應的方案是:保持票價不變,并降低成本;
③圖(3)對應的方案是:提高票價,并保持成本不變;
④圖(3)對應的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為原點,以極軸為
軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線
的參數方程為
.
(1)寫出直線的普通方程與曲線
的直角坐標方程;
(2)設曲線經過伸縮變換
得到曲線
,曲線
上任一點為
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com