精英家教網 > 高中數學 > 題目詳情

已知數列的首項
(1)求證:數列為等比數列;
(2)記,若,求最大正整數的值;
(3)是否存在互不相等的正整數,使成等差數列,且成等比數列?如果存在,請給予證明;如果不存在,請說明理由.

(1)證明過程見解析;(2)最大正整數的值為100;(3)滿足題意的正整數不存在.

解析試題分析:(1)由已知條件構造出,據等比數列的定義知數列為等比數列;(2)由等比數列的通項公式求出的通項公式.易得出,再解出即可;(3)假設存在,可得由通項公式代入化簡可得,因為,當且僅當時等號成立,又互不相等,則不存在.
試題解析:解:(1)因為,所以
又因為,所以,所以數列為等比數列.    4分
(2)由(1)可得,所以
,
,則,所求最大正整數的值為100.    9分
(3)假設存在滿足題意的正整數,
,
因為,所以,
化簡得,,因為
當且僅當時等號成立,又互不相等,
所以滿足題意的正整數不存在.      14分
考點:等比數列的定義,等比數列的前n項和,基本不等式,轉化與化歸的數學思想.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知均為給定的大于1的自然數.設集合,集合
(1)當,時,用列舉法表示集合
(2)設,,其中證明:若,則

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知成等比數列, 公比為,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}的各項均為正數的等比數列,且a1a2=2,a3a4=32,
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足(n∈N*),求設數列{bn}的前n項和T­n.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列的前項和為,且,其中是不為零的常數.
(1)證明:數列是等比數列;
(2)當時,數列滿足,,求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前n項的和為,且
(1)證明數列是等比數列
(2)求通項與前n項的和;
(3)設若集合M=恰有4個元素,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的各項均滿足,
(1)求數列的通項公式;
(2)設數列的通項公式是,前項和為,
求證:對于任意的正數,總有.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設Sn為數列{an}的前n項和,已知a1≠0,2an-a1=S1·Sn,n∈N*.
(1)求a1,a2,并求數列{an}的通項公式;
(2)求數列{nan}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}和{bn}滿足:a1λ,an+1ann-4,bn=(-1)n(an-3n+21),其中λ為實數,n為正整數.
(1)對任意實數λ,證明:數列{an}不是等比數列;
(2)試判斷數列{bn}是否為等比數列,并證明你的結論.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视