精英家教網 > 高中數學 > 題目詳情

數列的通項為 前項和為, 則_________.

解析試題分析:由數列的通項公式得,,四項為一組,每組的和都是6,故
考點:1、數列的通項公式;2、數列的前n項和.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

對于正項數列,定義的“蕙蘭”值,現知數列的“蕙蘭”值為,則數列的通項公式為=           .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知數列滿足為常數,),若,則         

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知數列{an}的前n項和,那么它的通項公式為an=_________ 

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

兩千多年前,古希臘畢達哥拉斯學派的數學家曾經在沙灘上研究數學問題,他們在沙灘上畫點或用小石子來表示數,按照點或小石子能排列的形狀對數進行分類,如圖2中的實心點個數1,5,12,22,…,被稱為五角形數,其中第1個五角形數記作,第2個五角形數記作,第3個五角形數記作,第4個五角形數記作,…,若按此規律繼續下去,得數列,則;對,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,數列的前項和為,點均在函數的圖象上.
(1)求數列的通項公式
(2)令,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

定義在上的函數,如果對于任意給定的等比數列,仍是等比數列,則稱為“保等比數列函數”. 現有定義在上的如下函數:
;  ②;   ③;   ④.
則其中是“保等比數列函數”的的序號為(   )

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

考慮以下數列{an},n∈N*:①ann2n+1;②an=2n+1;③an=ln .其中滿足性質“對任意的正整數nan+1都成立”的數列有________(寫出所有滿足條件的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

若數列{an}的前n項和為Snan,則數列{an}的通項公式是an=______.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视