【題目】對于函數有以下說法:
①是
的極值點.
②當時,
在
上是減函數.
③的圖像與
處的切線必相交于另一點.
④當時,
在
上是減函數.
其中說法正確的序號是_______________.
科目:高中數學 來源: 題型:
【題目】佳木斯一中從高二年級甲、乙兩個班中各選出7名學生參加2017年全國高中數學聯賽(黑龍江初賽),他們取得的成績(滿分140分)的莖葉圖如圖所示,其中甲班學生成績的中位數是81,乙班學生成績的平均數是86,若正實數、
滿足
,
,
成等差數列且
,
,
成等比數列,則
的最小值為( )
A. B. 2 C.
D. 8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|=,求直線l的傾斜角;
(2)若點P(1,1)滿足2=
,求此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數 y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數據求線性回歸方程,再用1月和6月的2組數據進行檢驗.
(1)請根據2、3、4、5月的數據,求出y關于x的線性回歸方程
;
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,
)
參考數據:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面上的三點 、
、
.
(1)求以 、
為焦點且過點
的橢圓的標準方程;
(2)設點 、
、
關于直線
的對稱點分別為
、
、
,求以
、
為焦點且過點
的雙曲線的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結果統計如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的圖象與函數y=x3﹣3x2+2的圖象關于點( ,0)對稱,過點(1,t)僅能作曲線y=f(x)的一條切線,則實數t的取值范圍是( )
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小型企業甲產品生產的投入成本(單位:萬元)與產品銷售收入
(單位:萬元)存在較好的線性關系,下表記錄了最近5次產品的相關數據.
| 7 | 10 | 11 | 15 | 17 |
| 19 | 22 | 25 | 30 | 34 |
(1)求關于
的線性回歸方程;
(2)根據(1)中的回歸方程,判斷該企業甲產品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?
相關公式:
,
.
【答案】(1).(2)投入成本20萬元的毛利率更大.
【解析】試題分析:(1)由回歸公式,解得線性回歸方程為;(2)當
時,
,對應的毛利率為
,當
時,
,對應的毛利率為
,故投入成本20萬元的毛利率更大。
試題解析:
(1),
,
,
,故
關于
的線性回歸方程為
.
(2)當時,
,對應的毛利率為
,
當時,
,對應的毛利率為
,
故投入成本20萬元的毛利率更大.
【題型】解答題
【結束】
21
【題目】已知橢圓的一個焦點為
.設橢圓
的焦點恰為橢圓
短軸的頂點,且橢圓
過點
.
(1)求的方程及離心率;
(2)若直線與橢圓
交于
兩點,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com