【題目】已知平面上的三點 、
、
.
(1)求以 、
為焦點且過點
的橢圓的標準方程;
(2)設點 、
、
關于直線
的對稱點分別為
、
、
,求以
、
為焦點且過點
的雙曲線的標準方程.
【答案】(1) (2)
.
【解析】試題分析:(1)根據題意設出所求的橢圓的標準方程,然后代入半焦距,根據橢圓的定義求出,從而可得
,進而可得橢圓的標準方程;(2)點
、
、
關于直線
的對稱點分別為
、
、
.設所求雙曲線的標準方程為
(
,
)其半焦距
,由雙曲線定義得
,得
,從而可得
,進而可得
、
為焦點且過點
的雙曲線的標準方程.
試題解析:(1)由題意知,焦點在 軸上,可設橢圓的標準方程為
(
)
其半焦距
由橢圓定義得
∴
∴
故橢圓的標準方程為 .
(2)點 、
、
關于直線
的對稱點分別為
、
、
.設所求雙曲線的標準方程為
(
,
)其半焦距
,
由雙曲線定義得
∴ ,∴
,
故所求的雙曲線的標準方程為 .
科目:高中數學 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構對春節燃放煙花爆竹的天數x與霧霾天數y進行統計分析,得出下表數據.
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(2)試根據(1)求出的線性回歸方程,預測燃放煙花爆竹的天數為9的霧霾天數.
(相關公式:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),在數列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(1)求數列{an},{bn}的通項公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人玩猜數字游戲,先由甲心中想一個數字,記為,再由乙猜甲剛才所想的數字,把乙猜的數字記為
,其中
,若
,就稱甲乙“心有靈犀”.現任意找兩人玩這個游戲,則他們“心有靈犀”的概率為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】遂寧市觀音湖港口船舶停靠的方案是先到先停.
(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表從1,2,3,4,5中各隨機選一個數(甲、乙選取的數互不影響),若兩數之和為偶數,則甲先?浚蝗魞蓴抵蜑槠鏀,則乙先停靠,這種規則是否公平?請說明理由.
(2)根據以往經驗,甲船將于早上7:00~8:00到達,乙船將于早上7:30~8:30到達,請求出甲船先?康母怕
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數有以下說法:
①是
的極值點.
②當時,
在
上是減函數.
③的圖像與
處的切線必相交于另一點.
④當時,
在
上是減函數.
其中說法正確的序號是_______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓(
)的離心率是
,點
在短軸
上,且
。
(1)球橢圓的方程;
(2)設為坐標原點,過點
的動直線與橢圓交于
兩點。是否存在常數
,使得
為定值?若存在,求
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓的中心為原點,長軸在
軸上,上頂點為
,左、右焦點分別為
,線段
的中點分別為
,且
是面積為
的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過作直線交橢圓于
兩點,使
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐A﹣BCD中,側棱AB,AC,AD兩兩垂直,△ABC、△ACD、△ABD的面積分別為 、
、2
,則三棱錐A﹣BCD的外接球的體積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com