在平面直角坐標系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點.
(1)如果直線l過拋物線的焦點,求·
的值;
(2)如果·
=-4,證明直線l必過一定點,并求出該定點.
科目:高中數學 來源: 題型:解答題
已知橢圓C的左、右焦點分別為,橢圓的離心率為
,且橢圓經過點
.
(1)求橢圓C的標準方程;
(2)線段是橢圓過點
的弦,且
,求
內切圓面積最大時實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中,點A、B的坐標分別為
,點C在x軸上方。
(1)若點C坐標為,求以A、B為焦點且經過點C的橢圓的方程;
(2)過點P(m,0)作傾角為的直線
交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數m的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點為圓心,以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)拋物線與橢圓
有公共焦點,設
與
軸交于點
,不同的兩點
、
在
上(
、
與
不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系中,已知中心在原點,離心率為
的橢圓E的一個焦點為圓
的圓心.
⑴求橢圓E的方程;
⑵設P是橢圓E上一點,過P作兩條斜率之積為的直線
,當直線
都與圓
相切時,求P點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率為
,長軸長為
,直線
交橢圓于不同的兩點
.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經過橢圓上的點
,求證:直線
的斜率互為相反數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點F是拋物線C:的焦點,S是拋物線C在第一象限內的點,且|SF|=
.
(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,且過點
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com