【題目】在如圖所示的五面體中,
,
,
,四邊形
為正方形,平面
平面
.
(1)證明:在線段上存在一點
,使得
平面
;
(2)求的長.
【答案】(1)證明見解析;(2)2.
【解析】試題分析:(1)取的中點
,連接
,由正方形的性質可證明四邊形
為平行四邊形,故
,由線面平行的判定定理可得
平面
,點
就是符合條件的點;(2)由平面
平面
及可得
平面
,可得
,在
中,由余弦定理,得
,由(1)得
,根據勾股定理可得
.
試題解析:(1)取的中點
,連接
;
因為,
,
,所以
,又四邊形
是正方形,所以
,
,
故四邊形為平行四邊形,故
,
因為平面
,
平面
,
所以平面
.
(2)因為平面平面
,四邊形
為正方形,所以
,
所以平面
.
在中,因為
,故
,又
,
所以由余弦定理,得,由(1)得
故.
【方法點晴】本題主要考查線面平行的判定定理、面面垂直的性質定理,屬于難題. 證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質,即兩平面平行,在其中一平面內的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數學 來源: 題型:
【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該校“慈善義工社”為學生提供了4次參加公益活動的機會,學生可通過網路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調查,數據統計如下表,其中“√”表示參加,“×”表示未參加.
(Ⅰ)從該校所有學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;
(Ⅱ)若在已抽取的100名學生中,2017年12月恰參加了1次活動的學生比4次活動均未參加的學生多17人,求的值;
(Ⅲ)若學生參加每次公益活動可獲得10個公益積分,試估計該校4000名學生中,2017年12月獲得的公益積分不少于30分的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,(其中
,
為自然對數的底數,
……).
(1)令,若
對任意的
恒成立,求實數
的值;
(2)在(1)的條件下,設為整數,且對于任意正整數
,
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC于點M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,上頂點為
,直線
與直線
垂直,橢圓
經過點
.
(1)求橢圓的標準方程;
(2)過點作橢圓
的兩條互相垂直的弦
.若弦
的中點分別為
,證明:直線
恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于集合,定義了一種運算“
”,使得集合
中的元素間滿足條件:如果存在元素
,使得對任意
,都有
,則稱元素
是集合
對運算“
”的單位元素.例如:
,運算“
”為普通乘法;存在
,使得對任意
,都有
,所以元素
是集合
對普通乘法的單位元素.
下面給出三個集合及相應的運算“”:
①,運算“
”為普通減法;
②{
表示
階矩陣,
},運算“
”為矩陣加法;
③(其中
是任意非空集合),運算“
”為求兩個集合的交集.
其中對運算“”有單位元素的集合序號為( )
A. ①②; B. ①③; C. ①②③; D. ②③.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖, 為圓柱
的母線,
是底面圓
的直徑,
是
的中點.
(Ⅰ)問: 上是否存在點
使得
平面
?請說明理由;
(Ⅱ)在(Ⅰ)的條件下,若平面
,假設這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐
外會有被捕的危險,求小魚被捕的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓經過
為坐標原點,線段
的中點在圓
上.
(1)求的方程;
(2)直線不過曲線
的右焦點
,與
交于
兩點,且
與圓
相切,切點在第一象限,
的周長是否為定值?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com