精英家教網 > 高中數學 > 題目詳情

【題目】已知中,三個內角,所對的邊分別是,,

1)證明:;

2)在①,②,③這三個條件中任選一個補充在下面問題中,并解答

,________,求的周長.

【答案】1)詳見解析;(2)選①,選②,選③,的周長皆為20

【解析】

1)根據余弦定理,計算得到證明.

2)分別選擇①②③,利用(1)中結論得到,再根據余弦定理得到,得到周長.

1)根據余弦定理:

,所以.

2)選①:因為,所以,

所以由(1)中所證結論可知,,即

因為,所以;

選②:因為,所以

由(1)中的證明過程同理可得,,

所以,即,因為,所以;

選③:因為,所以,

由(1)中的證明過程同理可得,,

所以,即,因為,所以

中,由余弦定理知,,

,解得(舍),所以

的周長為20

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若不等式的解集為,求實數的值;

(2)在(1)的條件下,若存在實數使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,它在點處的切線為直線.

(I)求直線的直角坐標方程;

(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年,新型冠狀病毒引發的疫情牽動著億萬人的心,八方馳援戰疫情,眾志成城克時難,社會各界支援湖北共抗新型冠狀病毒肺炎,重慶某醫院派出3名醫生,2名護士支援湖北,現從這5人中任選2人定點支援湖北某醫院,則恰有1名醫生和1名護士被選中的概率為(

A.0.7B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為,直線與拋物線相交于不同的, 兩點.

(1)求拋物線的標準方程;

(2)如果直線過拋物線的焦點,求的值;

(3)如果,直線是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】必修四第一章我們借助圓的對稱性學習了誘導公式,如在直觀上講單位圓中,當兩個角的終邊關于軸對稱時,這兩個角的正弦值相等;再如在單位圓中,當兩個角的終邊關于原點中心對稱時,這兩個角的正弦值互為相反數.觀察這些誘導公式,可以發現它們都是特殊角與任意角的三角函數的恒等關系.我們如果將特殊角換為任意角,那么任意角的和(或差)的三角函數與的三角函數會有什么關系呢?如果已知,的正弦余弦,能由此推出的正弦余弦嗎?下面是某高一學生在老師的指導下自行探究與角的正弦余弦之間的關系的部分過程,請你順著這位同學的思路以及老師的提示將探究過程完善,并完成后面的題目.探究過程如下:

不妨令如圖,設單位圓與軸的正半軸相交于點軸的非負半軸為始邊作角它們的終邊分別與單位圓相交于點連接若把扇形繞著點旋轉角,則點分別與點重合. ……(未完待續)

(提示一:任意一個圓繞著其圓心旋轉任意角后都與原來的圓重合,這一性質叫做圓的旋轉對稱性)(提示二:平面上任意兩點間的距離公式)

1)完善上述探究過程;

2)利用(1)中的結論解決問題:已知是第三象限角,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“搜索指數”是網民通過搜索引擎,以每天搜索關鍵詞的次數為基礎所得到的統計指標.“搜索指數”越大,表示網民對該關鍵詞的搜索次數越多,對該關鍵詞相關的信息關注度也越高.下圖是2017年9月到2018年2月這半年中,某個關鍵詞的搜索指數變化的走勢圖.

根據該走勢圖,下列結論正確的是( )

A. 這半年中,網民對該關鍵詞相關的信息關注度呈周期性變化

B. 這半年中,網民對該關鍵詞相關的信息關注度不斷減弱

C. 從網民對該關鍵詞的搜索指數來看,去年10月份的方差小于11月份的方差

D. 從網民對該關鍵詞的搜索指數來看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了估計某自然保護區中天鵝的數量,可以使用以下方法:先從該保護區中捕出一定數量的天鵝,例如200只,給每只天鵝做上不影響其存活的記號,然后放回保護區,經過適當的時間,讓其和保護區中其余的天鵝充分混合,再從保護區中捕出一定數量的天鵝,例如150只,查看其中有記號的天鵝,設有20只,試根據上述數據,估計該自然保護區中天鵝的數量.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)拋物線的開口向 、對稱軸為直線 、頂點坐標 ;

2)當 時,函數有最 值,是 ;

3)當 時,的增大而增大;當 時,的增大而減;

4)該函數圖象可由的圖象經過怎樣的平移得到的?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视