【題目】在 中,
分別是角
的對邊,且
,若
,
,則
的面積為( )
A.
B.
C.
D.
【答案】C
【解析】由正弦定理得:
a=2RsinA,b=2RsinB,c=2RsinC,
將上式代入已知 得
,
即2sinAcosB+sinCcosB+cosCsinB=0,即2sinAcosB+sin(B+C)=0,
∵A+B+C=π,∴sin(B+C)=sinA,
∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,
∵sinA≠0,∴cosB= ,
∵B為三角形的內角,∴B= ;
將 ,
,B=
代入余弦定理b2=a2+c22accosB得:
b2=(a+c)22ac2accosB,即13=162ac(1 ),
∴ac=3,∴S△ABC= acsinB=
.
所以答案是:C
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)設直線l與曲線C相交于A,B兩點,求∠AOB的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在正四棱柱 中,
,
分別為底面
、底面
的中心,
,
,
為
的中點,
在
上,且
.
(1)以 為原點,分別以
,
所在直線為
x 軸、
y 軸、
z 軸建立空間直角坐標系,求圖中各點的坐標.
(2)以 D 為原點,分別以
, DC,DD1所在直線為
軸、
軸、
軸建立空間直角坐標系,求圖中各點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 (
)
(1)若曲線 在點
處的切線經過點
,求
的值;
(2)若 在
內存在極值,求
的取值范圍;
(3)當 時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知扇形的圓心角是α,半徑為R,弧長為l.
(1)若α=75°,R=12 cm,求扇形的弧長l和面積;
(2)若扇形的周長為20 cm,當扇形的圓心角α為多少弧度時,這個扇形的面積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點為原點,焦點為F(1,0),過焦點的直線與拋物線交于A,B兩點,過AB的中點M作準線的垂線與拋物線交于點P,若|AB|=6,則點P的坐標為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com