在平面直角坐標系中,已知圓心在
軸上、半徑為
的圓
位于
軸右側,且與直線
相切.
(1)求圓的方程;
(2)在圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
已知點和圓
:
.
(Ⅰ)過點的直線
被圓
所截得的弦長為
,求直線
的方程;
(Ⅱ)若的面積
,且
是圓
內部第一、二象限的整點(平面內橫、縱坐標均為整數
的點稱為整點),求出點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓和點
(1)若過點
有且只有一條直線與圓
相切,求正實數
的值,并求出切線方程;(2)若
,過點
的圓的兩條弦
互相垂直,設
分別為圓心到弦
的距離.
(Ⅰ)求的值;
(Ⅱ)求兩弦長之積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為
,其中左焦點
.
(Ⅰ)求出橢圓C的方程;
(Ⅱ) 若直線與曲線C交于不同的A、B兩點,且線段AB的中點M在圓
上,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與
軸交于點O, A,
與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設直線y = –2x+4與圓C交于點M, N,若,求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)在平面直角坐標系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設斜率為1的直線l交C1于P、Q兩點.若l與圓x2+y2=1相切,求證:OP⊥OQ;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com