精英家教網 > 高中數學 > 題目詳情

【題目】已知函數 的最小正周期為 ,將函數 的圖象向左平移 個單位長度,再向下平移 個單位長度,得到函數 的圖象.
(Ⅰ)求函數 的單調遞增區間;
(Ⅱ)在銳角 中,角 的對邊分別為 .若 ,求 面積的最大值.

【答案】解:(Ⅰ)由題得, .由最小正周期為 ,得 .
.由 , ,得 .
故函數 的單調遞增區間是 ,
(Ⅱ)∵ ,∴ .∴ .
又∵ 為銳角,∴ .
由余弦定理,得 ,∴ .
,當且僅當 時,等號成立.∴ .∴ 面積的最大值為
【解析】(1)首先由兩角和差的正弦公式整理代數式即可得到f(x)= s i n ( 2 ω x ) ,借助周期公式即可求出 ω 的值。由正弦型函數的單調性利用整體思想即可求出x的取值范圍,即為函數 f ( x ) 的單調遞增區間。(2)由特殊值法代入數值求出s i n A的值,進而得到 c o s A的值再由余弦定理以及基本不等式得到bc的最大值,代入到三角形的面積公式中,進而求出面積的最大值。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在矩形 中,點 在線段 上, , ,沿直線 翻折成 ,使點 在平面 上的射影 落在直線 上.
(Ⅰ)求證:直線 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 處的切線斜率為2.
(Ⅰ)求 的單調區間和極值;
(Ⅱ)若 上無解,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 短軸兩個端點為 且四邊形 是邊長為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 分別是橢圓長軸的左、右端點,動點 滿足 ,連接 ,交橢圓于點 .證明: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 為常數)與 軸有唯一的公關點
(Ⅰ)求函數 的單調區間;
(Ⅱ)曲線 在點 處的切線斜率為 ,若存在不相等的正實數 ,滿足 ,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線 的參數方程為 為參數),直線 的參數方程為 為參數).
(Ⅰ)求曲線 和直線 的普通方程;
(Ⅱ)若點 為曲線 上一點,求點 到直線 的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為 元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發生有責任道路交通事故

下浮10%

上兩個年度未發生有責任道路交通事故

下浮20%

上三個及以上年度未發生有責任道路交通事故

下浮30%

上一個年度發生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:

類型

數量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
求一輛普通6座以下私家車(車險已滿三年)在下一年續保時保費高于基本保費的頻率;
某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元.且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=60°,ACBD相交于點O,AE⊥平面ABCD,CF//AE,AB=AE=2.

(1)求證:BD⊥平面ACFE;
(2)當直線FO與平面BDE所成的角為45°時,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】博鰲亞洲論壇2015年會員大會于3月27日在海南博鰲舉辦,大會組織者對招募的100名服務志愿者培訓后,組織一次 知識競賽,將所得成績制成如右頻率分布直方圖(假定每個分數段內的成績均勻分布),組織者計劃對成績前20名的參賽者進行獎勵.

(1)試確定受獎勵的分數線;
(2)從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務,試求2人成績都在90分以上的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视