【題目】2018年雙11當天,某購物平臺的銷售業績高達2135億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系,現從評價系統中選出200次成功交易,并對其評價進行統計,對商品的好評率為0.9,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為140次.
(1)請完成下表,并判斷是否可以在犯錯誤概率不超過0.5%的前提下,認為商品好評與服務好評有關?
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 140 | ||
對商品不滿意 | 10 | ||
合計 | 200 |
(2)若針對服務的好評率,采用分層抽樣的方式從這200次交易中取出4次交易,并從中選擇兩次交易進行客戶回訪,求只有一次好評的概率.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)詳見解析(2)0.5
【解析】
(1)根據題干條件得到列聯表,由公式得到的觀測值k,進行判斷即可;(2)采用分層抽樣的方式從這200次交易中取出4次交易,則好評的交易次數為3次,不滿意的次數為1次,從4次交易中,取出2次的所有取法為6種,其中只有一次好評的情況是3種,由古典概率的公式得到結果.
(1)由題意可得關于商品和服務評價的2×2列聯表:
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 140 | 40 | 180 |
對商品不滿意 | 10 | 10 | 20 |
合計 | 150 | 50 | 200 |
則.
由于7.407<7.879,則不可以在犯錯誤概率不超過0.5%的前提下,認為商品好評與服務好評有關.
(2)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出4次交易,則好評的交易次數為3次,不滿意的次數為1次.
記好評的交易為A,B,C,不滿意的交易為a,從4次交易中,取出2次的所有取法為(A,B),(A,C),(A,a),(B,C),(B,a),(C,a),共6種情況,
其中只有一次好評的情況是(A,a)、(B,a)、(C,a),共3種,
因此只有一次好評的概率為.
科目:高中數學 來源: 題型:
【題目】已知函數,其中
,
為自然對數的底數. 設
是
的導函數.
(Ⅰ)若時,函數
在
處的切線經過點
,求
的值;
(Ⅱ)求函數在區間
上的單調區間;
(Ⅲ)若,函數
在區間
內有零點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在直角坐標系中,曲線
的方程為
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】王明、李東、張紅三位同學在第一、第二學期消費的部分文具的數量如表所示:
姓名 | 第一學期 | 第二學期 | ||||||
筆記本 | 練習本 | 水筆 | 鉛筆 | 筆記本 | 練習本 | 水筆 | 鉛筆 | |
王明 | 3 | 5 | 2 | 4 | 4 | 6 | 3 | 3 |
李東 | 2 | 6 | 3 | 3 | 4 | 8 | 5 | 2 |
張紅 | 4 | 7 | 4 | 2 | 5 | 10 | 6 | 4 |
若筆記本的單價為每本5元;練習本每本2元;水筆每支3元;鉛筆每支1元.求三位學生在這些文具上各自花費的金額.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一種游戲畫板,要求參與者用六種顏色給畫板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有( )
A.120種B.240種C.144種D.288種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中按分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調查。現在按課外閱讀時間的情況將學生分成三類:A類(不參加課外閱讀),B類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),C類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時)。調查結果如下表:
A類 | B類 | C類 | |
男生 | x | 5 | 3 |
女生 | y | 3 | 3 |
(I)求出表中x,y的值;
(II)根據表中的統計數據,完成下面的列聯表,并判斷是否有90%的把握認為“參加課外閱讀與否”與性別有關;
男生 | 女生 | 總計 | |
不參加課外閱讀 | |||
參加課外閱讀 | |||
總計 |
(III)從抽出的女生中再隨機抽取3人進一步了解情況,記X為抽取的這3名女生中A類人數和C類人數差的絕對值,求X的數學期望。
附:K2=)
P(K2≥k0) | 0.10 | 0.01 | |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com