精英家教網 > 高中數學 > 題目詳情

為了解高二某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整;
(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;
下面的臨界值表供參考:

(參考公式K2,其中n=a+b+c+d)

(1)詳見解析;(2)有的把握認為喜愛打籃球與性別有關

解析試題分析:(1)依題意可知50人中喜愛打籃球的人數為人,其中男生有人。50人中不喜愛打籃球的人數為人,其中女生有人。據此可以將上表補充完整。(2)根據公式求,若則說明有的把握認為喜愛打籃球與性別有關,否則說明無關。
試題解析:解(1)列聯表補充如下:

6分
,
∴有的把握認為喜愛打籃球與性別有關.                 13分
考點:獨立性檢驗判斷兩個變量是否有關。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某市為“市中學生知識競賽”進行選拔性測試,且規定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的被淘汰.若有500人參加測試,學生成績的頻率分布直方圖如圖.

(1)求獲得參賽資格的人數;
(2)根據頻率直方圖,估算這500名學生測試的平均成績;
(3)若知識競賽分初賽和復賽,在初賽中每人最多有5次選題答題的機會,累計答對3題或答錯3題即終止,答對3題者方可參加復賽.已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響.已知他連續兩次答錯的概率為,求甲在初賽中答題個數的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位N名員工參加“社區低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統計的數據得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區間





人數

a
b
 
 
(1)求正整數a,b,N的值;
(2)現要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

衡水某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數學應用題上的得分率基本一致,試驗結束后,統計幾次數學應用題測試的平均成績(均取整數)如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數)
3
6
11
18
12
乙班
(人數)
4
8
13
15
10
現規定平均成績在80分以上(不含80分)的為優秀.
(1)試分別估計兩個班級的優秀率.
(2)由以上統計數據填寫下面2×2列聯表,并判斷“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率”是否有幫助?
 
優秀人數
非優秀人數
總計
甲班
 
 
 
乙班
 
 
 
總計
 
 
 
參考公式及數據:K2=,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某中學高三年級從甲、乙兩個班級各選出七名學生參加數學競賽,他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班學生的平均分是85,乙班學生成績的中位數是83.

(1)求xy的值;
(2)計算甲班七名學生成績的方差.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩位學生參加數學競賽培訓.現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數據.
(2)現要從中選派一人參加數學競賽,從穩定性的角度考慮,你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(1)根據莖葉圖計算樣本均值.
(2)日加工零件個數大于樣本均值的工人為優秀工人.根據莖葉圖推斷該車間12名工人中有幾名優秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優秀工人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(1)根據莖葉圖計算樣本均值;
(2)日加工零件個數大于樣本均值的工人為優秀工人.根據莖葉圖推斷該車間12名工人中有幾名優秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優秀工人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是指大氣中直徑小于或等于微米的顆粒物,也稱為可吸入肺顆粒物.我國標準采用世衛組織設定的最寬限值,即日均值在微克/立方米以下空氣質量為一級;在微克/立方米微克/立方米之間空氣質量為二級;在微克/立方米以上空氣質量為超標.某試點城市環保局從該市市區年上半年每天的監測數據中隨機的抽取天的數據作為樣本,監測值如下圖莖葉圖所示(十位為莖,個位為葉).

(1)在這天的日均監測數據中,求其中位數;
(2)從這天的數據中任取天數據,記表示抽到監測數據超標的天數,求的分布列及數學期望;
(3)以這天的日均值來估計一年的空氣質量情況,則一年(按天計算)中平均有多少天的空氣質量達到一級或二級.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视