【題目】已知正項數列的前
項和為
,數列
滿足
.
(1)求數列的通項公式;
(2)數列滿足
,它的前
項和為
,
(。┣;
(ⅱ)若存在正整數,使不等式
成立,求實數
的取值范圍.
【答案】(1),
;(2)(ⅰ)
;(ii)
或
.
【解析】
(1)根據已知,當時,求出
,當
是,利用
,得到數列
的遞推關系,進而證明數列
是等差數列,即可求出結論;
(2)(ⅰ)由數列通項公式的特征,用錯位相減法求出
;
(ⅱ)對分為奇數、偶數討論,分離參數轉化為存在正整數
,使得
或
,求出
最值,即可得出結論.
(1),
當時,
,∴
或
(舍去)
當時,由
,得
,
兩式相減得:,∴
,
即,∴
.
又∵數列為正項數列,故
,也即
,
∴數列是以1為首項,1為公差的等差數列,
∴,
.
(2)(。,則
①,
②,
可得:
,
故.
(ⅱ)即不等式成立,
若為偶數,則
,所以
,
設,則
在
單調遞減,
故當時,
,所以
;
若為奇數,則
,所以
設,則
在
單調遞增,
故當時,
,所以
,
綜上所述,的取值范圍
或
.
科目:高中數學 來源: 題型:
【題目】某早餐店對一款新口味的酸奶進行了一段時間試銷,定價為5元/瓶.酸奶在試銷售期間足量供應,每天的銷售數據按照[15,25],(25,35],(35,45],(45,55]分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.試銷結束后,這款酸奶正式上市,廠家只提供整箱批發:大箱每箱50瓶,批發成本85元;小箱每箱30瓶,批發成本65元.由于酸奶保質期短,當天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發一箱(計算時每個分組取中間值作為代表,比如銷量為(45,55]時看作銷量為50瓶).
(1)設早餐店批發一大箱時,當天這款酸奶的利潤為隨機變量X,批發一小箱時,當天這款酸奶的利潤為隨機變量Y,求X和Y的分布列;
(2)從早餐店的收益角度和利用所學的知識作為決策依據,該早餐店應每天批發一大箱還是一小箱?(必須作出一種合理的選擇)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于,若數列
滿足
,則稱這個數列為“K數列”.
(Ⅰ)已知數列:1,m+1,m2是“K數列”,求實數的取值范圍;
(Ⅱ)是否存在首項為-1的等差數列為“K數列”,且其前n項和
滿足
?若存在,求出
的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數的等比數列是“K數列”,數列
不是“K數列”,若
,試判斷數列
是否為“K數列”,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一種產品,第一年投入資金1000萬元,出售產品收入40萬元,預計以后每年的投入資金是上一年的一半,出售產品所得收入比上一年多80萬元,同時,當預計投入的資金低于20萬元時,就按20萬元投入,且當年出售產品收入與上一年相等.
(1)求第年的預計投入資金與出售產品的收入;
(2)預計從哪一年起該公司開始盈利?(注:盈利是指總收入大于總投入)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點坐標為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,過點
的直線
(與
軸不重合)與橢圓
交于
兩點,直線
與直線
相交于點
,試證明:直線
與
軸平行.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1中,CD∥AB, AB⊥BC,AB=BC=2CD=2,側棱AA1⊥平面ABCD.且點M是AB1的中點
(1)證明:CM∥平面ADD1A1;
(2)求點M到平面ADD1A1的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小.
(2)求DP與平面AA′D′D所成角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com