【題目】己知n為正整數,數列{an}滿足an>0,4(n+1)an2﹣nan+12=0,設數列{bn}滿足bn=
(1)求證:數列{ }為等比數列;
(2)若數列{bn}是等差數列,求實數t的值:
(3)若數列{bn}是等差數列,前n項和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數a1的值.
【答案】
(1)證明:數列{an}滿足an>0,4(n+1)an2﹣nan+12=0,
∴ =
an+1,即
=2
,
∴數列{ }是以a1為首項,以2為公比的等比數列
(2)解:由(1)可得: =
,∴
=n
4n﹣1.
∵bn= ,∴b1=
,b2=
,b3=
,
∵數列{bn}是等差數列,∴2× =
+
,
∴ =
+
,
化為:16t=t2+48,解得t=12或4
(3)解:數列{bn}是等差數列,由(2)可得:t=12或4.
①t=12時,bn= =
,Sn=
,
∵對任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,
∴8 ×
﹣a14n2=16×
,
∴
=
,n=1時,化為:﹣
=
>0,無解,舍去.
②t=4時,bn= =
,Sn=
,
對任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,
∴8 ×
﹣a14n2=16×
,
∴n =4m,
∴a1=2 .∵a1為正整數,∴
=
k,k∈N*.
∴滿足條件的所有整數a1的值為{a1|a1=2 ,n∈N*,m∈N*,且
=
k,k∈N*}.
【解析】(1)數列{an}滿足an>0,4(n+1)an2﹣nan+12=0,化為: =2×
,即可證明.(2)由(1)可得:
=
,可得
=n
4n﹣1 . 數列{bn}滿足bn=
,可得b1 , b2 , b3 , 利用數列{bn}是等差數列即可得出t.(3)根據(2)的結果分情況討論t的值,化簡8a12Sn﹣a14n2=16bm , 即可得出a1 .
【考點精析】利用等比數列的通項公式(及其變式)和數列的前n項和對題目進行判斷即可得到答案,需要熟知通項公式:;數列{an}的前n項和sn與通項an的關系
.
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF上一點,且DM⊥平面ACE.
(1)求BM的長;
(2)求二面角A﹣DM﹣B的余弦值的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+
b|<
;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點坐標為F1(﹣1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P、Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M、N,則△F1MN的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.命題“p∧q”為假命題,則p,q均為假命題
B.命題“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2x°≤1”
C.命題“若a>b,則a2>b2”的逆否命題是“若a2<b2 , 則a<b”
D.設x∈R,則“x> ”是“2x2+x﹣1>0”的必要而不充分條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=cosxsin2x,下列說法中正確的是
①y=f(x)的圖象關于(π,0)中心對稱;②y=f(x)的圖象關于直線x= 對稱
③y=f(x)的最大值是 ; ④f(x)即是奇函數,又是周期函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知三點O(0,0),A(2, ),B(2
,
).
(1)求經過O,A,B的圓C1的極坐標方程;
(2)以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,圓C2的參數方程為 (θ是參數),若圓C1與圓C2外切,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 設函數g(n)= ,若bn=g(2n+4),n∈N* , 則數列{bn}的前n(n≥2)項和Sn等于 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com