【題目】微信紅包是一款可以實現收發紅包、查收記錄和提現的手機應用.某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環境下搶到的紅包個數進行統計,得到如表數據:
手機品牌 | |||||
甲品牌(個 | 4 | 3 | 8 | 6 | 12 |
乙品牌(個 | 5 | 7 | 9 | 4 | 3 |
手機品牌 | 優 | 非優 | 合計 |
乙品牌(個 | |||
合計 |
(1)如果搶到紅包個數超過5個的手機型號為“優”,否則“非優”,請完成上述列聯表,據此判斷是否有
的把握認為搶到的紅包個數與手機品牌有關?
(2)如果不考慮其它因素,要從甲品牌的5種型號中選出3種型號的手機進行大規模宣傳銷售.以表示選中的手機型號中搶到的紅包超過5個的型號種數,求隨機變量
的分布列及數學期望
.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | <>2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
科目:高中數學 來源: 題型:
【題目】十九大以來,某貧困地區扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區人民群眾脫貧奔小康.經過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加.為了制定提升農民年收入、實現2020年脫貧的工作計劃,該地扶貧辦統計了2019年50位農民的年收入并制成如下頻率分布直方圖:
(1)根據頻率分布直方圖,估計50位農民的年平均收入元(單位:千元)(同一組數據用該組數據區間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區農民年收入X服從正態分布,其中
近似為年平均收入
,
近似為樣本方差
,經計算得
,利用該正態分布,求:
(i)在扶貧攻堅工作中,若使該地區約有占總農民人數的84.14%的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數最有可能是多少?
附參考數據:,若隨機變量X服從正態分布
,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在橢圓
上,
為右焦點,
軸,
為橢圓上的四個動點,且
,
交于原點
.
(1)判斷直線與橢圓的位置關系;
(2設,
滿足
,判斷
的值是否為定值,若是,請求出此定值,并求出四邊形
面積的最大值,否則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“二萬五千里長征”是1934年10月到1936年10月中國工農紅軍進行的一次戰略轉移,是人類歷史上的偉大奇跡,向世界展示了中國工農紅軍的堅強意志,在期間發生了許多可歌可泣的英雄故事.在中國共產黨建黨周年之際,某中學組織了“長征英雄事跡我來講”活動,已知該中學共有高中生
名,用分層抽樣的方法從該校高中學生中抽取一個容量為
的樣本參加活動,其中高三年級抽了
人,高二年級抽了
人,則該校高一年級學生人數為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】變換T1是逆時針旋轉角的旋轉變換,對應的變換矩陣是M1;變換T2對應的變換矩陣是M2=
.
(1)點P(2,1)經過變換T1得到點P',求P'的坐標;
(2)求曲線y=x2先經過變換T1,再經過變換T2所得曲線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若曲線上一點
的極坐標為
,且
過點
,求
的普通方程和
的直角坐標方程;
(2)設點,
與
的交點為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為
(
為參數),以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸建立極坐標系,橢圓
的極坐標方程為
.
(1)求直線的普通方程(寫成一般式)和橢圓
的直角坐標方程(寫成標準方程);
(2)若直線與橢圓
相交于
,
兩點,且與
軸相交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為.
(1)求曲線C的普通方程;
(2)直線l的參數方程為,(t為參數),直線l與x軸交于點F,與曲線C的交點為A,B,當
取最小值時,求直線l的直角坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足:
(常數
),
.數列
滿足:
.
(1)求的值;
(2)求出數列的通項公式;
(3)問:數列的每一項能否均為整數?若能,求出k的所有可能值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com