精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱柱為長方體,點上的一點.

(1)若的中點,當為何值時,平面平面;

(2)若, ,當時,直線與平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,請說明理由.

【答案】12時, 取得最大值1.

【解析】試題分析:1)要使平面平面,只需平面.只需,只需,因為的中點,所以,所以;(2)建立空間直角坐標系,寫出直線與平面所成角的正弦,利用二次函數求其最大值即可.

試題解析:1)要使平面平面,只需平面.

因為四棱柱為長方體,

所以平面,所以.

又因為,所以只需,

只需,只需,

因為,所以只需,

因為的中點,所以,所以.

所以當時,平面平面.

(2)存在.理由如下:建立如圖所示的空間直角坐標系

,所以

,則,

設平面的法向量為,則,

所以,取,則,

所以,

設直線與平面所成的角為,

,則,

所以

所以當,即,時, 取得最大值1.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設正項數列的前項和為,且滿足, ,各項均為正數的等比數列滿足.

(Ⅰ)求數列的通項公式;

(Ⅱ)若,數列的前項和為.若對任意, ,均有恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數f(x),g(x)滿足:對于任意的x,都有f(﹣x)+f(x)=0,g(x)=g(|x|).當x<0時,f′(x)<0,g′(x)>0,則當x>0時,有(
A.f'(x)>0,g′(x)>0
B.f′(x)<0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)>0,g′(x)<0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=xlnx,g(x)= ,直線l:y=(k﹣3)x﹣k+2
(1)函數f(x)在x=e處的切線與直線l平行,求實數k的值
(2)若至少存在一個x0∈[1,e]使f(x0)<g(x0)成立,求實數a的取值范圍
(3)設k∈Z,當x>1時f(x)的圖象恒在直線l的上方,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點P(1,0)作直線分別交射線OA,OB于點A,B.
(1)當AB的中點在直線x﹣2y=0上時,求直線AB的方程;
(2)當△AOB的面積取最小值時,求直線AB的方程.
(3)當PAPB取最小值時,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在R上定義運算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),則a+b的值為(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)滿足:在定義域D內存在實數x0 , 使得f(x0+1)=f(x0)+f(1)成立,則稱函數f(x)為“1的飽和函數”.給出下列四個函數:①f(x)= ;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos(πx).其中是“1的飽和函數”的所有函數的序號為(
A.①③
B.②④
C.①②
D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}是首項a1=4的等比數列,且S3 , S2 , S4成等差數列,
(1)求數列{an}的通項公式;
(2)若bn=log2|an|,設Tn為數列 的前n項和,若Tn≤λbn+1對一切n∈N*恒成立,求實數λ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題是真命題的為(
A.若x2=1,則x=1
B.若x=y,則
C.若x<y,則x2<y2
D.若 ,則x=y

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视