精英家教網 > 高中數學 > 題目詳情

【題目】從某工廠生產的某種產品中抽取1000件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:

(1)求這1000件產品質量指標值的樣本平均數和樣本方差(同一組數據用該區間的中點值作代表)

(2)由頻率分布直方圖可以認為,這種產品的質量指標值服從正態分布,其中以近似為樣本平均數近似為樣本方差

(。├迷撜龖B分布,求

(ⅱ)某用戶從該工廠購買了100件這種產品,記表示這100件產品中質量指標值為于區間(127.6,140)的產品件數,利用(。┑慕Y果,求

附:.若,則

【答案】(1)平均數=140;(2)(ⅰ)0.3413(ⅱ)見解析

【解析】

(1)由頻率分布直方圖中的數據結合平均數和方差公式直接計算即可;(2)(ⅰ)由(1)中數據知,計算出答案即可;(ⅱ)依題意知服從二項分布,由二項分布的直接計算即可.

(1)抽取產品的質量指標值的樣本平均數和樣本方差分別為

(2)(。┯桑1)知,,

從而

(ⅱ)由(ⅰ)知,一件產品的質量指標值位于區間的概率為

依題意知服從二項分布,

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形, 是矩形,平面平面 , , , 的中點.

(1)求證: 平面

(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年為我國改革開放40周年,某事業單位共有職工600人,其年齡與人數分布表如下:

年齡段

人數(單位:人)

180

180

160

80

約定:此單位45歲~59歲為中年人,其余為青年人,現按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.

(1)抽出的青年觀眾與中年觀眾分別為多少人?

(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關心民生大事,其余人熱衷關心民生大事.完成下列列聯表,并回答能否有的把握認為年齡層與熱衷關心民生大事有關?

熱衷關心民生大事

不熱衷關心民生大事

總計

青年

12

中年

5

總計

30

(3)若從熱衷關心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上臺表演節目,則抽出的2人能勝任才藝表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.己知

的極坐標為,曲線的極坐標方程為,曲線的參數方程為,為參數).曲線和曲線相交于兩點.

(1)求點的直角坐標;

(2)求曲線的直角坐標方程和曲線的普通方程;

(3)求的面枳,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了調查某品牌飲料的某種食品添加劑是否超標,現對該品牌下的兩種飲料一種是碳酸飲料含二氧化碳,另一種是果汁飲料不含二氧化碳進行檢測,現隨機抽取了碳酸飲料、果汁飲料各10均是組成的一個樣本,進行了檢測,得到了如下莖葉圖根據國家食品安全規定當該種添加劑的指標大于毫克為偏高,反之即為正常.

1)依據上述樣本數據,完成下列列聯表,并判斷能否在犯錯誤的概率不超過的前提下認為食品添加劑是否偏高與是否含二氧化碳有關系?

正常

偏高

合計

碳酸飲料

果汁飲料

合計

2)現從食品添加劑偏高的樣本中隨機抽取2瓶飲料去做其它檢測,求這兩種飲料都被抽到的概率.

參考公式:,其中

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】.

1)若是增函數,求實數a的范圍;

2)若上最小值為3,求實數a的值;

3)若時恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

獲得相應職位概率

0.4

0.3

0.2

0.1

獲得相應職位概率

0.4

0.3

0.2

0.1

(1)根據以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;

(2)某課外實習作業小組調查了1000名職場人士,就選擇這兩家公司的意愿做了統計,得到以下數據分布:

選擇意愿

人員結構

40歲以上(含40歲)男性

40歲以上(含40歲)女性

40歲以下男性

40歲以下女性

選擇甲公司

110

120

140

80

選擇乙公司

150

90

200

110

若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k15.5513,測得出選擇意愿與年齡有關系的結論犯錯誤的概率的上限是多少?并用統計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在五面體中,四邊形是邊長為的正方形,平面⊥平面, .

(Ⅰ) 求證:;

(Ⅱ) 求證:平面⊥平面;

(Ⅲ) 在線段上是否存在點,使得⊥平面? 說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數是定義在上的不恒為零的函數,對于任意實數滿足: ,, 考查下列結論:① ;②為奇函數;③數列為等差數列;④數列為等比數列.

以上結論正確的是__________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视