精英家教網 > 高中數學 > 題目詳情

【題目】隨著經濟的發展,個人收入的提高,自201911日起,個人所得稅起征點和稅率的調整,調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額,依照個人所得稅稅率表,調整前后的計算方法如下表:

個人所得稅稅率表(調整前)

個人所得稅稅率表(調整后)

免征額3500

免征額5000

級數

全月應納稅所得額

稅率(%

級數

全月應納稅所得額

稅率(%

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

某稅務部門在某公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:

收入(元)

人數

30

40

10

8

7

5

1)若某員工2月的工資、薪金等稅前收入為7500元時,請計算一下調整后該員工的實際收入比調整前增加了多少?

2)現從收入在的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數,表示抽到作為宣講員的收入在元的人數,設隨機變量,求的分布列與數學期望.

【答案】1220;(2)見解析.

【解析】

1)分別計算出調整前和調整后繳納的個稅即可

2)可得組抽取3人,組抽取4,的取值是,分別算出對應的概率即可

1)按調整前起征點應繳納個稅為:元,

調整后應納稅:元,

比較兩納稅情況,可知調整后少交個稅220元,

即個人的實際收入增加了220.

2)由題意,知組抽取3人,組抽取4人,

時,,當,時,,

,時,,所以的所有取值為:02,4,

,

所求分布列為

0

2

4

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知動點到定直線的距離比到定點的距離大2.

(1)求動點的軌跡的方程;

(2)在軸正半軸上,是否存在某個確定的點,過該點的動直線與曲線交于,兩點,使得為定值.如果存在,求出點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知{an}是等差數列,其前n項和Snn22n+b1,{bn}是等比數列,其前n項和Tn,則數列{ bn +an}的前5項和為( 。

A.37B.-27C.77D.46

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的離心率為,左、右頂點分別為A,B,點M是橢圓C上異于A,B的一點,直線AMy軸交于點P

(Ⅰ)若點P在橢圓C的內部,求直線AM的斜率的取值范圍;

(Ⅱ)設橢圓C的右焦點為F,點Qy軸上,且∠PFQ=90°,求證:AQBM

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下四個結論,正確的是(

①質檢員從勻速傳遞的產品生產流水線上,每間隔15分鐘抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;

②在回歸直線方程中,當變量每增加一個單位時,變量增加0.13個單位;

③在頻率分布直方圖中,所有小矩形的面積之和是1;

④對于兩個分類變量,求出其統計量的觀測值,觀測值越大,我們認為有關系的把握程度就越大.

A.②④B.②③C.①③D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】同程旅游隨機調查了年齡在(單位:歲)內的1250人的購票情況,其中50歲以下(不包含50歲)的有900人,50歲以上(包含50歲)的有350人,由調查數據的統計結果顯示,有的人參與網上購票,網上購票人數的頻率分布直方圖如下圖所示.

1)已知年齡在,的網上購票人數成等差數列,求的值;

2)根據題目數據填寫列聯表,并根據填寫數據判斷能否在犯錯誤的概率不超過0.001的前提下,認為網上購票與年齡有關系?

50歲以下

50歲以上

總計

參與網上購票

不參與網上購票

總計

附:

0.010

0.005

0.001

6.635

7.879

10.828

3)為鼓勵大家網上購票,該平臺常采用購票就發放酒店入住代金券的方法進行促銷,具體做法如下:年齡在歲的每人發放20元,其余年齡段的每人發放50元,先按發放代金券的金額采用分層抽樣的方式從參與調查的1000位網上購票者中抽取10人,并在這10人中隨機抽取3人進行回訪調查,求此3人獲得代金券的金額總和的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,平面底面,上的一點.

1)證明:平面平面

2)若直線平面,且,求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了疫情防護網絡知識競賽活動.現從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

1)求的值,并估計這100名學生的平均成績(同一組中的數據用該組區間的中點值為代表);

2)在抽取的100名學生中,規定:比賽成績不低于80分為優秀,比賽成績低于80分為非優秀”.請將下面的2×2列聯表補充完整,并判斷是否有99%的把握認為比賽成績是否優秀與性別有關

優秀

非優秀

合計

男生

40

女生

50

合計

100

參考公式及數據:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓E)過點,其心率等于.

1)求橢圓E的標準方程;

2)若AB分別是橢圓E的左,右頂點,動點M滿足,且橢圓E于點P.

①求證:為定值:

②設與以為直徑的圓的另一交點為Q,求證:直線經過定點.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视