【題目】在平面直角坐標系中,直線l的參數方程為 (t為參數),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點,求△AOB的面積.
科目:高中數學 來源: 題型:
【題目】某企業準備招聘一批大學生到本單位就業,但在簽約前要對他們的某項專業技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數多于男生人數),如果從中隨機選2人參加測試,其中恰為一男一女的概率為;(Ⅰ)求該小組中女生的人數;(Ⅱ)假設此項專業技能測試對該小組的學生而言,每個女生通過的概率均為
,每個男生通過的概率均為
;現對該小組中男生甲、男生乙和女生丙3個人進行測試,記這3人中通過測試的人數為隨機變量
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求的單調遞增區間.
(2)在ΔABC中,角A,B,C所對的邊分別為a,b,c,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數,
),曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)設曲線與曲線
的交點分別為
,求
的最大值及此時直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.小華同學利用劉徽的“割圓術”思想在半徑為1的圓內作正邊形求其面積,如圖是其設計的一個程序框圖,則框圖中應填入、輸出
的值分別為( )
(參考數據:)
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】萊昂哈德·歐拉,瑞士數學家、自然科學家.
歲時入讀巴塞爾大學,
歲大學畢業,
歲獲得碩士學位,他是數學史上最多產的數學家.其中之一就是他發現并證明歐拉公式
,從而建立了三角函數和指數函數的關系.若將其中的
取作
就得到了歐拉恒等式
,它是數學里令人著迷的一個公式,它將數學里最重要的幾個量聯系起來:兩個超越數:自然對數的底數
,圓周率
;兩個單位:虛數單位
和自然數單位
;以及被稱為人類偉大發現之一的
,數學家評價它是“上帝創造的公式”請你根據歐拉公式:
,解決以下問題:
(1)試將復數寫成
(
、
,
是虛數單位)的形式;
(2)試求復數的模.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com