【題目】已知函數,對任意
,都有
.
討論
的單調性;
當
存在三個不同的零點時,求實數
的取值范圍.
【答案】(1) 當時,
在
上單調遞減;當
時,
在
和
上單調遞減,
在
上單調遞增.;(2)
【解析】
(1)根據可得
,得到
,求導后,分別在
和
兩種情況下討論導函數符號,得到單調性;(2)根據(1)中所求單調性,否定
的情況;在
時,首先求得
為一個零點;再利用零點存在性定理求解出
中存在一個零點
;根據
,可確定另一個零點
,從而可知
滿足題意.
(1)由,得
則,
若時,即
時,
在
單調遞減
若,即
時,
有兩個零點
零點為:,
又開口向下
當時,
,
,
單調遞減
當時,
,
,
單調遞增
當時,
,
,
單調遞減
綜上所述,當時,
在
上單調遞減;當
時,
在
和
上單調遞減,
在
上單調遞增
(2)由(1)知當時,
單調遞減,不可能有三個不同的零點;
當時,
在
和
上單調遞減,
在
上單調遞增
,又
,有
在
上單調遞增,
,
令,
令,
單調遞增
由,求得
當時,
單調遞減,
在
上單調遞增
故
故,
,
由零點存在性定理知在區間
有一個根,設為:
又,得
,
,
是
的另一個零點
故當時,
存在三個不同的零點
,
,
科目:高中數學 來源: 題型:
【題目】《鄭州市城市生活垃圾分類管理辦法》已經政府常務會議審議通過,自2019年12月1日起施行.垃圾分類是對垃圾收集處置傳統方式的改革,是對垃圾進行有效處置的一種科學管理方法.所謂垃圾其實都是資源,當你放錯了位置時它才是垃圾.某企業在市科研部門的支持下進行研究,把廚余垃圾加工處理為一種可銷售的產品.已知該企業每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數關系可近似地表示為,且每加工處理一噸廚余垃圾得到的產品售價為16元.
(Ⅰ)該企業每周加工處理量為多少噸時,才能使每噸產品的平均加工處理成本最低?
(Ⅱ)該企業每周能否獲利?如果獲利,求出利潤的最大值;如果不獲利,則需要市政府至少補貼多少元才能使該企業不虧損?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.先把高二年級的2000名學生編號:1到2000,再從編號為1到50的學生中隨機抽取1名學生,其編號為,然后抽取編號為
,
,
,…的學生,這種抽樣方法是分層抽樣法
B.線性回歸直線不一定過樣本中心
C.若一個回歸直線方程為,則變量
每增加一個單位時,
平均增加3個單位
D.若一組數據2,4,,8的平均數是5,則該組數據的方差也是5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的左、右焦點分別為
,右頂點為A,上頂點為B,且滿足向量
(1)若A,求橢圓的標準方程;
(2)設P為橢圓上異于頂點的點,以線段PB為直徑的圓經過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業收入占比和凈利潤占比統計表:
空調類 | 冰箱類 | 小家電類 | 其它類 | |
營業收入占比 | ||||
凈利潤占比 |
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營銷虧損
B. 該公司2018年度小家電類電器營業收入和凈利潤相同
C. 該公司2018年度凈利潤主要由空調類電器銷售提供
D. 剔除冰箱類電器銷售數據后,該公司2018年度空調類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數方程為
,
為參數
,在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線
的極坐標方程為
.
Ⅰ
寫出
的普通方程和
的直角坐標方程;
Ⅱ
若
與
相交于A,B兩點,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形是正方形,
平面
,
,
,
,
,
分別為
,
,
的中點.
(1)求證: 平面
;
(2)求平面與平面
所成銳二面角的大;
(3)在線段上是否存在一點
,使直線
與直線
所成的角為
?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓的四個頂點構成的四邊形面積為
.
(1)求橢圓的方程;
(2)若是橢圓上的一點,過
且斜率等于
的直線與橢圓
交于另一點
,點
關于原點的對稱點為
.求
面積的最大值及取最大值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有兩個車間生產同一種產品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產完成一件產品的時間(單位:min)分別進行統計,得到下列統計圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計 | 20 |
第一車間樣本頻數分布表
(Ⅰ)分別估計兩個車間工人中,生產一件產品時間小于75min的人數;
(Ⅱ)分別估計兩車間工人生產時間的平均值,并推測哪個車間工人的生產效率更高?(同一組中的數據以這組數據所在區間中點的值作代表)
(Ⅲ)從第一車間被統計的生產時間小于75min的工人中,隨機抽取3人,記抽取的生產時間小于65min的工人人數為隨機變量X,求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com