【題目】下列說法中正確的是( )
A.先把高二年級的2000名學生編號:1到2000,再從編號為1到50的學生中隨機抽取1名學生,其編號為,然后抽取編號為
,
,
,…的學生,這種抽樣方法是分層抽樣法
B.線性回歸直線不一定過樣本中心
C.若一個回歸直線方程為,則變量
每增加一個單位時,
平均增加3個單位
D.若一組數據2,4,,8的平均數是5,則該組數據的方差也是5
科目:高中數學 來源: 題型:
【題目】宋元時期數學名著《算學啟蒙》中有關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個程序框圖,若輸入,
,則輸出的
等于( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m是實數,關于x的方程E:x2﹣mx+(2m+1)=0.
(1)若m=2,求方程E在復數范圍內的解;
(2)若方程E有兩個虛數根x1,x2,且滿足|x1﹣x2|=2,求m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線Γ的方程為y2=4x,點P的坐標為(1,1).
(1)過點P,斜率為﹣1的直線l交拋物線Γ于U,V兩點,求線段UV的長;
(2)設Q是拋物線Γ上的動點,R是線段PQ上的一點,滿足2
,求動點R的軌跡方程;
(3)設AB,CD是拋物線Γ的兩條經過點P的動弦,滿足AB⊥CD.點M,N分別是弦AB與CD的中點,是否存在一個定點T,使得M,N,T三點總是共線?若存在,求出點T的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PC、PD的中點,則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結論正確的是________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的左、右焦點分別為
,右頂點為A,上頂點為B,且滿足向量
。
(1)若,求橢圓的標準方程;
(2)設為橢圓上異于頂點的點,以線段PB為直徑的圓經過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com