【題目】如圖,已知拋物線:
與圓
:
(
)相交于
、
、
、
四個點.
(Ⅰ)求的取值范圍;
(Ⅱ)當四邊形的面積最大時,求對角線
、
的交點
的坐標.
【答案】(1)(2)
【解析】(Ⅰ)將拋物線代入圓
的方程,消去
,整理得
.............(1)
拋物線與圓
相交于
、
、
、
四個點的充要條件是:方程(1)有兩個不相等的正根
∴即{
解這個不等式組得
.
(II) 設四個交點的坐標分別為、
、
、
。則直線AC、BD的方程分別為
解得點P的坐標為。則由(I)根據韋達定理有
,
由于四邊形ABCD為等腰梯形,因而其面積
令,則
下面求
的最大值。
方法1:由三次均值有:
當且僅當,即
時取最大值。經檢驗此時
滿足題意。故所求的點P的坐標為
法2:令,
,
∴,
令得
,或
(舍去)
當時,
;當
時
;當
時,
故當且僅當時,
有最大值,即四邊形ABCD的面積最大,故所求的點P的坐標為
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x-1|+|2x-1|.
(Ⅰ)若對x>0,不等式f(x)≥tx恒成立,求實數t的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數a,b滿足a2+b2=2M.證明:a+b≥2ab.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量=(2cos
,
sin
),
=(cos
,2cos
),(ω>0),設函數f(x)=
,且f(x)的最小正周期為π.
(1)求函數f(x)的表達式;
(2)求f(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數f(x)的定義域;
(2)若函數f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國人均讀書4.3本(包括網絡文學和教科書),比韓國的11本.法國的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用.出現這樣的統計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統的文明古國.禮儀之邦的地位不相符.某小區為了提高小區內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現對小區內看書人員進行年齡調查,隨機抽取了一天名讀書者進行調查,將他們的年齡分成6段:
,
,
,
,
,
后得到如圖所示的頻率分布直方圖.問:
(1)估計在40名讀書者中年齡分布在的人數;
(2)求40名讀書者年齡的平均數和中位數;
(3)若從年齡在的讀書者中任取2名,求恰有1名讀書者年齡在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調銷售單價以提高銷量增加收益.據估算,若今年的實際銷售單價為元/件(
),則新增的年銷量
(萬件).
(1)寫出今年商戶甲的收益(單位:萬元)與
的函數關系式;
(2)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩企業生產同一種型號零件,按規定該型號零件的質量指標值落在內為優質品.從兩個企業生產的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:
甲企業:
乙企業:
(1)已知甲企業的500件零件質量指標值的樣本方差,該企業生產的零件質量指標值
服從正態分布
,其中
近似為質量指標值的樣本平均數
(注:求
時,同一組數據用該區間的中點值作代表),
近似為樣本方差
,試根據該企業的抽樣數據,估計所生產的零件中,質量指標值不低于71.92的產品的概率.(精確到0.001)
(2)由以上統計數據完成下面列聯表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產的零件的質量有差異”.
附注:
參考數據: ,
參考公式: ,
,
.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電子公司開發一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質量和技術含金量提高,市場分析的結果表明,如果每個配件的銷售價提高的百分率為
,那么月平均銷售量減少的百分率為
,記改進工藝后電子公司銷售該配件的月平均利潤是
(元).
(1)寫出與
的函數關系式;
(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com