【題目】某電子公司開發一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質量和技術含金量提高,市場分析的結果表明,如果每個配件的銷售價提高的百分率為
,那么月平均銷售量減少的百分率為
,記改進工藝后電子公司銷售該配件的月平均利潤是
(元).
(1)寫出與
的函數關系式;
(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0). (Ⅰ)求f(x)的表達式;
(Ⅱ)在(Ⅰ)的條件下,設函數F(x)=f(x)﹣mx,若F(x)在區間[﹣2,2]上是單調函數,求實數m的取值范圍;
(Ⅲ)設函數g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數的最小值為h(k),求h(k)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個質地均勻的正四面體的四個面上分別標示著數字1,2,3,4,一個質地均勻的骰子(正方體)的六個面上分別標示數字1,2,3,4,5,6,先后拋擲一次正四面體和骰子.
(1)列舉出全部基本事件;
(2)求被壓在底部的兩個數字之和小于5的概率;
(3)求正四面體上被壓住的數字不小于骰子上被壓住的數字的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線的參數方程為
(
為參數,
).
(Ⅰ)當時,若曲線
上存在
兩點關于點
成中心對稱,求直線
的參數方程;
(Ⅱ)在以原點為極點,軸正半軸為極軸的極坐標系中,極坐標方程為
的直線
與曲線
相交于
兩點,若
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左焦點為
,設
是橢圓
的兩個短軸端點,
是橢圓
的長軸左端點.
(Ⅰ)當時,設點
,直線
交橢圓
于
,且直線
的斜率分別為
,求
的值;
(Ⅱ)當時,若經過
的直線
與橢圓
交于
兩點,O為坐標原點,求
與
的面積之差的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
)為奇函數,且相鄰兩對稱軸間的距離為
.
(1)當時,求
的單調遞減區間;
(2)將函數的圖象沿
軸方向向右平移
個單位長度,再把橫坐標縮短到原來的
(縱坐標不變),得到函數
的圖象.當
時,求函數
的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com