【題目】甲乙兩俱樂部舉行乒乓球團體對抗賽.雙方約定:
①比賽采取五場三勝制(先贏三場的隊伍獲得勝利.比賽結束)
②雙方各派出三名隊員.前三場每位隊員各比賽﹣場
已知甲俱樂部派出隊員A1、A2 . A3 , 其中A3只參加第三場比賽.另外兩名隊員A1、A2比賽場次未定:乙俱樂部派出隊員B1、B2 . B3 , 其中B1參加第一場與第五場比賽.B2參加第二場與第四場比賽.B3只參加第三場比賽
根據以往的比賽情況.甲俱樂部三名隊員對陣乙俱樂部三名隊員獲勝的概率如表:
A1 | A2 | A3 | |
B1 | |||
B2 | |||
B3 |
(1)若甲俱樂部計劃以3:0取勝.則應如何安排A1、A2兩名隊員的出場順序.使得取勝的概率最大?
(2)若A1參加第一場與第四場比賽,A2參加第二場與第五場比賽,各隊員每場比賽的結果互不影響,設本次團體對抗賽比賽的場數為隨機變量X,求X的分布列及數學期望E(X)
【答案】
(1)解:設A1、A2兩名隊員分別參加第一場和第二場比賽,
甲俱樂部計劃以3:0取勝的概率p1= .
設A1、A2兩名隊員分別參加第二場和第一場比賽,
甲俱樂部計劃以3:0取勝的概率p2= =
.
∵p1>p2,
∴甲俱樂部安排A1、A2兩名隊員分別參加第一場和第二場比賽,則三場即獲勝的概率最大.
(2)解:由題意比賽場次X的可能取值為3,4,5,
P(X=3)= =
,
P(X=4)= +
=
,
P(X=5)=1﹣P(X=3)﹣P(X=4)= ,
∴X的分布列為:
X | 3 | 4 | 5 |
P |
∴EX= =
【解析】(1)先求出A1、A2兩名隊員分別參加第一場和第二場比賽甲俱樂部計劃以3:0取勝的概率,再求出A1、A2兩名隊員分別參加第二場和第一場比賽,甲俱樂部計劃以3:0取勝的概率.由此能求出甲俱樂部安排A1、A2兩名隊員分別參加第一場和第二場比賽,則三場即獲勝的概率最大.(2)由題意比賽場次X的可能取值為3,4,5,分別求出相應的概率,由此能求出X的分布列和EX.
【考點精析】關于本題考查的離散型隨機變量及其分布列,需要了解在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知F1 , F2分別為橢圓C: +
=1(a>b>0)的左、右兩個焦點,橢圓上點M(
,
)到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸,生產每噸乙產品要用A原料1噸,B原料3噸。銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元,該企業在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸,那么該企業可獲得最大利潤是___________萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代數學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經驗方式為:弧田面積= (弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現有圓心角為
,半徑等于4米的弧田,按照上述經驗公式計算所得弧田面積約是( )
A.6平方米
B.9平方米
C.12平方米
D.15平方米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面四邊形ABCD內接于圓O,AC是圓O的一條直徑,PA⊥平面ABCD,PA=AC=2,E是PC的中點,∠DAC=∠AOB
(1)求證:BE∥平面PAD;
(2)若二面角P﹣CD﹣A的正切值為2,求直線PB與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1中,M、N、E、F分別是棱A1B1、A1D1、B1C1、C1D1的中點.
(1)求MN與AC所成角,并說明理由.
(2)求證:平面AMN∥平面EFDB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線y2=8x的焦點為F,過點F作直線l與拋物線分別交于A,B兩點,若點M滿足 =
(
+
),過M作y軸的垂線與拋物線交于點P,若|PF|=4,則M點的橫坐標為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】廣場舞是現代城市群眾文化、娛樂發展的產物,其兼具文化性和社會性,是精神文明建設成果的一個重要指標和象征.2015年某高校社會實踐小組對某小區跳廣場舞的人的年齡進行了凋查,隨機抽取了40名廣場舞者進行調查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(1)估計在40名廣場舞者中年齡分布在[40,70)的人數;
(2)求40名廣場舞者年齡的中位數和平均數的估計值;
(3)若從年齡在[20,40)中的廣場舞者中任取2名,求這兩名廣場舞者年齡在[30,40)中的人數X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com