【題目】已知F1 , F2分別為橢圓C: +
=1(a>b>0)的左、右兩個焦點,橢圓上點M(
,
)到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.
【答案】
(1)解:依據橢圓的定義2a=4a=2,
∵ 在橢圓
上,
∴ ,把a=2代入可得b2=3.
∴橢圓方程
(2)解:由(1)得,c=1,則N(1, ),
設直線NE的方程為: ,
代入 ,得
.
設E(xE,yE),F(xF,yF),
∵點 在橢圓上,
∴由韋達定理得: .
∴ .
又直線NF的斜率與NE的斜率互為相反數,
在上式中以﹣k代k,可得 ,
∴xF+xE= ,
..
∴直線EF的斜率
= ,
即直線EF的斜率為定值,其值為
【解析】(1)由已知求得a,把已知的坐標代入橢圓方程得到關于a,b的關系式,把a代入求得b,則橢圓方程可求;(2)求出N的坐標,設出NE所在直線方程,與橢圓方程聯立求得E的坐標,同理求得F的坐標,代入兩點求斜率公式可得直線EF的斜率為定值.
科目:高中數學 來源: 題型:
【題目】設全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=( )
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列個結論:
①棱長均相等的棱錐一定不是六棱錐;
②函數既不是奇函數又不是偶函數;
③若函數的值域為
,則實數
的取值范圍是
;
④若函數滿足條件
,則
的最小值為
.
其中正確的結論的序號是:______. (寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},a1=1,且an﹣1﹣an﹣1an﹣an=0(n≥2,n∈N*),記bn=a2n﹣1a2n+1 , 數列{bn}的前n項和為Tn , 則滿足不等式Tn< 成立的最大正整數n為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐S﹣ABCD,SB⊥AD,側面SAD是邊長為4的等邊三角形,底面ABCD為菱形,側面SAD與底面ABCD所成的二面角為120°.
(1)求點S到平面ABCD的距離;
(2)若E為SC的中點,求二面角A﹣DE﹣C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線:
.
(1)已知直線與雙曲線
交于不同的兩點
,且
,求實數
的值;
(2)過點作直線
與雙曲線
交于不同的兩點
,若弦
恰被點
平分,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某海關對同時從三個不同地區進口的某種商品進行隨機抽樣檢測,已知從
三個地區抽取的商品件數分別是50,150,100.檢測人員再用分層抽樣的方法從海關抽樣的這些商品中隨機抽取6件樣品進行檢測.
(1)求這6件樣品中,來自各地區商品的數量;
(2)若在這6件樣品中隨機抽取2件送往另一機構進行進一步檢測,求這2件樣品來自相同地區的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某汽配廠生產某種零件,每個零件的出廠單價為60元,為了鼓勵更多銷售商訂購,該廠決定當一次訂購超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低元,但實際出廠單價不低于51元.
當一次訂購量最少為多少時,零件的實際出廠單價恰好為51元?
設一次訂購量為x個,零件的實際出廠單價為p元,寫出函數
的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩俱樂部舉行乒乓球團體對抗賽.雙方約定:
①比賽采取五場三勝制(先贏三場的隊伍獲得勝利.比賽結束)
②雙方各派出三名隊員.前三場每位隊員各比賽﹣場
已知甲俱樂部派出隊員A1、A2 . A3 , 其中A3只參加第三場比賽.另外兩名隊員A1、A2比賽場次未定:乙俱樂部派出隊員B1、B2 . B3 , 其中B1參加第一場與第五場比賽.B2參加第二場與第四場比賽.B3只參加第三場比賽
根據以往的比賽情況.甲俱樂部三名隊員對陣乙俱樂部三名隊員獲勝的概率如表:
A1 | A2 | A3 | |
B1 | |||
B2 | |||
B3 |
(1)若甲俱樂部計劃以3:0取勝.則應如何安排A1、A2兩名隊員的出場順序.使得取勝的概率最大?
(2)若A1參加第一場與第四場比賽,A2參加第二場與第五場比賽,各隊員每場比賽的結果互不影響,設本次團體對抗賽比賽的場數為隨機變量X,求X的分布列及數學期望E(X)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com