精英家教網 > 高中數學 > 題目詳情

已知等差數列{an}前三項之和為-3,前三項積為8.
(1)求等差數列{an}的通項公式;
(2)若a2,a3,a1成等比數列,求數列{|an|}的前n項和.

(1)an=-3n+5或an=3n-7.(2)Sn

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知等差數列{}的首項為a.設數列的前n項和為Sn,且對任意正整數n都有
(1)求數列{}的通項公式及Sn;
(2)是否存在正整數n和k,使得成等比數列?若存在,求出n和k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,數列滿足
(1)求數列的通項公式;
(2)對,設,若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是公比為的等比數列,且成等差數列.
⑴求的值;
⑵設是以為首項,為公差的等差數列,求的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列中,其前項和為,滿足.
(1)求數列的通項公式;
(2)設為正整數),求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}是首項為1,公差為d的等差數列,數列{bn}是首項為1,公比為q(q>1)的等比數列.
(1)若a5=b5,q=3,求數列{an·bn}的前n項和;
(2)若存在正整數k(k≥2),使得ak=bk.試比較an與bn的大小,并說明理由..

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列{an}中,公差d>0,其前n項和為Sn,且滿足a2·a3=45,a1+a4=14.
(1)求數列{an}的通項公式;
(2)設由bn (c≠0)構成的新數列為{bn},求證:當且僅當c=-時,數列{bn}是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前n項和為Sn,并且滿足a1=2,nan+1=Sn+n(n+1).
(1)求{an}的通項公式;
(2)令Tn Sn,是否存在正整數m,對一切正整數n,總有Tn≤Tm?若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知公差不為零的等差數列{an}的前4項和為10,且a2,a3a7成等比數列.
(1)求通項公式an;
(2)設bn=2an,求數列{bn}的前n項和Sn.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视